University of Tasmania
Browse

File(s) under permanent embargo

Remarkable recovery and colonization behaviour of methane oxidizing bacteria in soil after disturbance is controlled by methane source only

journal contribution
posted on 2023-05-19, 05:53 authored by Pan, Y, Abell, GCJ, Bodelier, PLE, Meima-Franke, M, Sessitsch, A, Bodrossy, L
Little is understood about the relationship between microbial assemblage history, the composition and function of specific functional guilds and the ecosystem functions they provide. To learn more about this relationship we used methane oxidizing bacteria (MOB) as model organisms and performed soil microcosm experiments comprised of identical soil substrates, hosting distinct overall microbial diversities (i.e., full, reduced and zero total microbial and MOB diversities). After inoculation with undisturbed soil, the recovery of MOB activity, MOB diversity and total bacterial diversity were followed over 3 months by methane oxidation potential measurements and analyses targeting pmoA and 16S rRNA genes. Measurement of methane oxidation potential demonstrated different recovery rates across the different treatments. Despite different starting microbial diversities, the recovery and succession of the MOB communities followed a similar pattern across the different treatment microcosms. In this study we found that edaphic parameters were the dominant factor shaping microbial communities over time and that the starting microbial community played only a minor role in shaping MOB microbial community

History

Publication title

Microbial Ecology: An International Journal

Volume

68

Pagination

259-270

ISSN

0095-3628

Department/School

Tasmanian Institute of Agriculture (TIA)

Publisher

Springer-Verlag

Place of publication

175 Fifth Ave, New York, USA, Ny, 10010

Rights statement

Copyright Springer Science+Business Media New York 2014

Repository Status

  • Restricted

Socio-economic Objectives

Other environmental management not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC