eCite Digital Repository
Towards improved estimates of sea-ice algal biomass: experimental assessment of hyperspectral imaging cameras for under-ice studies
Citation
Cimoli, E and Lucieer, A and Meiners, KM and Lund-Hansen, LC and Kennedy, F and Martin, A and McMinn, A and Lucieer, V, Towards improved estimates of sea-ice algal biomass: experimental assessment of hyperspectral imaging cameras for under-ice studies, Annals of Glaciology, 58, (75 pt1) pp. 68-77. ISSN 0260-3055 (2017) [Refereed Article]
![]() | PDF 475Kb |
Copyright Statement
Copyright 2017 The Author. Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/
Abstract
Ice algae are a key component in polar marine food webs and have an active role in large-scale biogeochemical cycles. They remain extremely under-sampled due to the coarse nature of traditional point sampling methods compounded by the general logistical limitations of surveying in polar regions. This study provides a first assessment of hyperspectral imaging as an under-ice remote-sensing method to capture sea-ice algae biomass spatial variability at the ice/water interface. Ice-algal cultures were inoculated in a unique inverted sea-ice simulation tank at increasing concentrations over designated cylinder enclosures and sparsely across the ice/water interface. Hyperspectral images of the sea ice were acquired with a pushbroom sensor attaining 0.9 mm square pixel spatial resolution for three different spectral resolutions (1.7, 3.4, 6.7 nm). Image analysis revealed biomass distribution matching the inoculated chlorophyll a concentrations within each cylinder. While spectral resolutions >6 nm hindered biomass differentiation, 1.7 and 3.4 nm were able to resolve spatial variation in ice algal biomass implying a coherent sensor selection. The inverted ice tank provided a suitable sea-ice analogue platform for testing key parameters of the methodology. The results highlight the potential of hyperspectral imaging to capture sea-ice algal biomass variability at unprecedented scales in a non-invasive way.
Item Details
Item Type: | Refereed Article |
---|---|
Keywords: | sea ice, Antarctica, hyperspectral imaging, remote sensing, ice algae, ice tank, under-ice environment |
Research Division: | Engineering |
Research Group: | Geomatic engineering |
Research Field: | Photogrammetry and remote sensing |
Objective Division: | Environmental Management |
Objective Group: | Coastal and estuarine systems and management |
Objective Field: | Assessment and management of coastal and estuarine ecosystems |
UTAS Author: | Cimoli, E (Dr Emiliano Cimoli) |
UTAS Author: | Lucieer, A (Professor Arko Lucieer) |
UTAS Author: | Meiners, KM (Dr Klaus Meiners) |
UTAS Author: | Kennedy, F (Dr Fraser Kennedy) |
UTAS Author: | Martin, A (Dr Andrew Martin) |
UTAS Author: | McMinn, A (Professor Andrew McMinn) |
UTAS Author: | Lucieer, V (Associate Professor Vanessa Lucieer) |
ID Code: | 116484 |
Year Published: | 2017 |
Web of Science® Times Cited: | 10 |
Deposited By: | Ecology and Biodiversity |
Deposited On: | 2017-05-10 |
Last Modified: | 2022-08-23 |
Downloads: | 157 View Download Statistics |
Repository Staff Only: item control page