eCite Digital Repository

Methanotrophic communities in Australian woodland soils of varying salinity


Bissett, A and Abell, GCJ and Bodrossy, L and Richardson, AE and Thrall, PH, Methanotrophic communities in Australian woodland soils of varying salinity, FEMS Microbiology Ecology: (Federation of European Microbiological Societies), 80, (3) pp. 685-695. ISSN 0168-6496 (2012) [Refereed Article]

Copyright Statement

Copyright 2012 Federation of European Microbiological Societies

DOI: doi:10.1111/j.1574-6941.2012.01341.x


Despite their large areas and potential importance as methane sinks, the role of methane-oxidizing bacteria (MOB) in native woodland soils is poorly understood. These environments are increasingly being altered by anthropogenic disturbances, which potentially alter ecosystem service provision. Dryland salinity is one such disturbance and is becoming increasingly prevalent in Australian soils. We used microarrays and analysis of soil physicochemical variables to investigate the methane-oxidizing communities of several Australian natural woodland soils affected to varying degrees by dryland salinity. Soils varied in terms of salinity, gravitational water content, NO3-N, SO4-S and Mg, all of which explained to a significant degree MOB community composition. Analysis of the relative abundance and diversity of the MOB communities also revealed significant differences between soils of different salinities. Type II and type Ib methanotrophs dominated the soils and differences in methanotroph communities existed between salinity groups. The low salinity soils possessed less diverse MOB communities, including most conspicuously, the low numbers or absence of type II Methylocystis phylotypes. The differences in MOB communities suggest niche separation of MOB across varying salinities, as has been observed in the closely related ammonia-oxidizing bacteria, and that anthropogenic disturbance, such as dryland salinity, has the potential to alter MOB community and therefore the methane uptake rates in soils in which disturbance occurs.

Item Details

Item Type:Refereed Article
Keywords:methane-oxidising bacteria, microarray, pmoA, salinity, soil
Research Division:Environmental Sciences
Research Group:Soil sciences
Research Field:Soil biology
Objective Division:Environmental Management
Objective Group:Terrestrial systems and management
Objective Field:Soils
UTAS Author:Bodrossy, L (Dr Levente Bodrossy)
ID Code:116412
Year Published:2012
Web of Science® Times Cited:14
Deposited By:Tasmanian Institute of Agriculture
Deposited On:2017-05-09
Last Modified:2017-09-04

Repository Staff Only: item control page