eCite Digital Repository

Diffusion vs. linear ballistic accumulation: Different models, different conclusions about the slope of the zROC in recognition memory

Citation

Osth, AF and Bora, B and Dennis, S and Heathcote, A, Diffusion vs. linear ballistic accumulation: Different models, different conclusions about the slope of the zROC in recognition memory, Journal of Memory and Language ISSN 0749-596X (2017) [Refereed Article]


Preview
PDF
Pending copyright assessment - Request a copy
1Mb
  

Abstract

The relative amount of variability in memory strength for targets vs. lures in recognition memory is commonly measured using the receiver operating characteristic (ROC) procedure, in which participants are given either a bias manipulation or are instructed to give confidence ratings to probe items. A near universal finding is that targets have higher variability than lures. Ratcliff and Starns (2009) questioned the conclusions of the ROC procedure by demonstrating that accounting for decision noise within a response time model yields different conclusions about relative memory evidence than the ROC procedure yields. In an attempt to better understand the source of the discrepancy, we applied models that include different sources of decision noise, including both the diffusion decision model (DDM) and the linear ballistic accumulator (LBA) model, which both include and lack within-trial noise in evidence accumulation, and compared their estimates of the ratio of standard deviations to those from ROC analysis. Each method produced dramatically different estimates of the relative variability of target items, with the LBA even indicating equal variance in some cases. This stands in contrast to prior work suggesting that the DDM and LBA produce largely similar estimates of relevant model parameters, such as drift rate, boundary separation, and nondecision time. Parameter validation using data from Starnsís (2014) numerosity discrimination data demonstrated that only the DDM was able to correctly reproduce the evidence ratios in the data. These results suggest that the DDM may be providing a more accurate account of lure-to-target variability evidence ratios in recognition memory.

Item Details

Item Type:Refereed Article
Keywords:diffusion decision model; linear ballistic accumulator; receiver operating characteristics; signal detection theory; recognition memory
Research Division:Psychology and Cognitive Sciences
Research Group:Cognitive Sciences
Research Field:Computer Perception, Memory and Attention
Objective Division:Expanding Knowledge
Objective Group:Expanding Knowledge
Objective Field:Expanding Knowledge in Psychology and Cognitive Sciences
Author:Heathcote, A (Professor Andrew Heathcote)
ID Code:116073
Year Published:2017
Deposited By:Psychology
Deposited On:2017-05-01
Last Modified:2017-10-30
Downloads:0

Repository Staff Only: item control page