University of Tasmania
Browse

File(s) under permanent embargo

Large-scale ocean-atmospheric processes and seasonal rainfall variability in South Australia: potential for improving seasonal hydroclimatic forecasts

journal contribution
posted on 2023-05-19, 03:43 authored by Tozer, CR, Kiem, AS, Verdon-Kidd, DC
Seasonal rainfall forecasts are an important tool for risk management across many sectors. However, significant challenges arise in the development of skilful and practically useful seasonal forecasts for regions where the temporal and spatial variability of rainfall is large and/or knowledge about what causes this variability is in its infancy. This is evident in the state of South Australia (SA), where seasonal rainfall currently has low predictive skill. The key climate processes have yet to be fully identified in SA and therefore may not be adequately represented in forecast models. The aim of this paper is to identify and quantify relationships between large-scale ocean-atmospheric processes and seasonal rainfall variability across SA. We identify two distinct climate zones: (1) the arid northern region, where rainfall is mostly influenced by climate processes stemming from the tropical Indian and/or Pacific Oceans and (2) southern SA, which is dominated by Southern Ocean processes. The average percent of variability of SA rainfall accounted for by any single large-scale climate process (i.e. linear regression using a single predictor) is 8% in summer, 19% in autumn, 33% in winter and 24% in spring. However, when two or more processes are considered in combination (through multiple linear regression), this rises to 13, 26, 46, and 33%, respectively, highlighting the importance of capturing the interaction among multiple climate processes. Importantly, the findings from this study provide a set of metrics against which existing statistical and dynamical forecasting schemes can be tested and highlight processes that should be focused on in order to improve (or develop new) forecasting schemes. The study also recommends the need for further investigations into non-linear relationships between rainfall and large-scale ocean-atmospheric processes and the development of more objective methods for determining which climate process, or combination of processes, are most important for a certain season or location.

History

Publication title

International Journal of Climatology

Volume

37

Issue

S1

Pagination

861-877

ISSN

0899-8418

Department/School

Institute for Marine and Antarctic Studies

Publisher

John Wiley & Sons Ltd

Place of publication

The Atrium, Southern Gate, Chichester, England, W Sussex, Po19 8Sq

Rights statement

Copyright 2017 Royal Meteorological Society

Repository Status

  • Restricted

Socio-economic Objectives

Other environmental management not elsewhere classified

Usage metrics

    University Of Tasmania

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC