University of Tasmania
Browse
2017_James et al_2017_LatGradientInDeepReefCommSEAustralia_MEPS.pdf (1.09 MB)

Changes in deep reef benthic community composition across a latitudinal and environmental gradient in temperate Eastern Australia

Download (1.09 MB)
journal contribution
posted on 2023-05-19, 03:00 authored by James, LC, Marzloff, MP, Neville BarrettNeville Barrett, Friedman, A, Craig JohnsonCraig Johnson
Deep reef assemblages in south-eastern Australia are poorly described, and have been surveyed by only a few studies conducted over small spatial scales. Here, we characterise the composition of deep (~30-90 m depth) sessile invertebrate communities from sub-tropical (27°S) to temperate eastern Australia (43°S). We estimated the cover of 51 preselected invertebrate types from over 1700 seafloor images collected by an autonomous underwater vehicle from >105 km of transects across the study region. Seafloor images were assessed using 3 alternative schemes reflecting different resolution of benthic invertebrate groupings, including the broad- level Collaborative and Automated Tools for Analysis of Marine Imagery project (‘CATAMI’) classification recently developed as a generic scoring approach for seafloor imagery. Ordination using canonical analysis of principal coordinates indicated a clear latitudinal gradient in benthic community composition and, particularly when based on individual morphotypes, 3 distinct community types (sub-tropical, warm temperate and cool temperate). Changes in community structure mostly correlated with primary productivity and the temperature climatology, while local-scale variability in community composition was most related to depth. Along with the gradual shift in deep reef community composition across latitudes, region-specific sessile invertebrates might serve as useful indicators of change in these deep benthic communities under future changes in ocean climate in the region, which has been identified as a global hotspot for ocean warming. Our methodological approach has general applicability for large-scale surveying and monitoring of benthic communities using underwater imagery.

History

Publication title

Marine Ecology - Progress Series

Volume

565

Pagination

35-52

ISSN

0171-8630

Department/School

Institute for Marine and Antarctic Studies

Publisher

Inter-Research

Place of publication

Nordbunte 23, Oldendorf Luhe, Germany, D-21385

Rights statement

Copyright 2017 the Authors and IMAS. Licensed under Creative Commons Attribution 3.0 Unported (CC BY 3.0) https://creativecommons.org/licenses/by/3.0/

Repository Status

  • Open

Socio-economic Objectives

Ecosystem adaptation to climate change

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC