eCite Digital Repository

Sigmoidal transformations and the Euler-Maclaurin expansion for evaluating certain Hadamard finite-part integrals

Citation

Elliott, D and Venturino, E, Sigmoidal transformations and the Euler-Maclaurin expansion for evaluating certain Hadamard finite-part integrals, Numerische Mathematik, 77, (4) pp. 453-465. ISSN 0029-599X (1997) [Refereed Article]

DOI: doi:10.1007/s002110050295

Abstract

Starting with some results of Lyness concerning the Euler-Maclaurin expansion of Cauchy principal value integrals over (0, 1) it is shown how, by the use of sigmoidal transformations good approximations can be found for the Hadamard finite-part integral Finite Part integral sign1 0 (φ(x)/(x -c)2)dx, where O < c < 1. The analysis is illustrated by some numerical examples.

Item Details

Item Type:Refereed Article
Research Division:Mathematical Sciences
Research Group:Numerical and Computational Mathematics
Research Field:Numerical Analysis
Objective Division:Expanding Knowledge
Objective Group:Expanding Knowledge
Objective Field:Expanding Knowledge in the Mathematical Sciences
Author:Elliott, D (Professor David Elliott)
Author:Venturino, E (Dr Venturino)
ID Code:11514
Year Published:1997
Web of Science® Times Cited:41
Deposited By:Mathematics
Deposited On:1997-08-01
Last Modified:2011-08-12
Downloads:0

Repository Staff Only: item control page