eCite Digital Repository

3D integrated numerical model for Fluid-Structures-Seabed Interaction (FSSI): Loosely deposited seabed foundation

Citation

Ye, J and Jeng, D-S and Chan, AHC and Wang, R and Zhu, QC, 3D integrated numerical model for Fluid-Structures-Seabed Interaction (FSSI): Loosely deposited seabed foundation, Soil Dynamics and Earthquake Engineering, 92 pp. 239-252. ISSN 0267-7261 (2017) [Refereed Article]

Copyright Statement

Copyright 2016 Elsevier Ltd.

DOI: doi:10.1016/j.soildyn.2016.10.026

Abstract

In the past several decades, a great number of offshore structures have been constructed on loosely deposited seabed foundation because sometimes there would be no a dense seabed floor could be chosen in planned sites, for example, the breakwaters and oil platforms in the Yellow River estunary area, China. Wave-induced residual liquefaction is easy to occur in loosely deposited seabed, which brings great risk to the stability of offshore structures. In this study, we focus our attention on the 3D interaction mechanism between ocean wave, a caisson breakwater and its loosely deposited seabed foundation. A three-dimensional integrated numerical model FSSI-CAS 3D is taken as the computational tool; and the soil constitutive model: Pastor-Zienkiewicz Mark III (PZIII) proposed by Pastor et al. [16] is adopted to describe the wave-induced dynamic behavior of loose seabed soil. The numerical results indicate that the developed integrated numerical model FSSI-CAS 3D is capable of capturing a series of nonlinear phenomena, such as tilting, subsiding of breakwater, as well as residual liquefaction in loose seabed foundation etc., in the interaction process between ocean wave, a caisson breakwater and its loose seabed foundation. The purpose of this study is to provide coastal engineers with comprehensive understanding of FSSI problme involving loosely deposited seabed soil; and propose a reliable computational method to engineers involved in the design of offshore structures on loose seabed foundation.

Item Details

Item Type:Refereed Article
Keywords:fluid-structures-seabed interaction (FSSI), loosely deposited seabed foundation, 3D residual liquefaction, caisson breakwater, PZIII, FSSI-CAS 3D
Research Division:Engineering
Research Group:Civil Engineering
Research Field:Civil Geotechnical Engineering
Objective Division:Construction
Objective Group:Construction Design
Objective Field:Civil Construction Design
Author:Chan, AHC (Professor Andrew Chan)
ID Code:114916
Year Published:2017
Web of Science® Times Cited:1
Deposited By:Office of the School of Engineering
Deposited On:2017-03-02
Last Modified:2017-05-08
Downloads:0

Repository Staff Only: item control page