eCite Digital Repository

Combustion waves in Sal'nikov's reaction scheme in a spherically symmetric gas

Citation

Paul, RA and Forbes, LK, Combustion waves in Sal'nikov's reaction scheme in a spherically symmetric gas, Journal of Engineering Mathematics, 101, (1) pp. 29-45. ISSN 0022-0833 (2016) [Refereed Article]

Copyright Statement

Springer Science+Business Media Dordrecht 2016

DOI: doi:10.1007/s10665-016-9843-0

Abstract

We model a chemical reaction that proceeds according to Sal'nikov's combustion scheme in a spherically symmetric cloud of gas. The gas density, velocity, temperature and the concentration of intermediate reactant are all assumed to be small perturbations about a steady-state equilibrium, and linearised solutions to the governing partial differential equations are derived. We demonstrate that the behaviour of the solutions occurs in two different ways, depending on the value of a derived parameter which is defined in terms of various properties of the occurring reaction. When this parameter is zero, the solutions present as travelling waves, and exact solutions are found in terms of the initial perturbations to the chemical system. When this parameter is non-zero, solutions are found as integrals over a basis of spherical Bessel functions. A brief stability analysis of these solutions is also presented, and it is shown that the linear stability is dependent only on the same derived parameter. We then conclude by comparing the linear results to a numerical solution of the full non-linear problem, which verifies the accuracy of the linearised results.

Item Details

Item Type:Refereed Article
Keywords:combustion, waves, reaction scheme, gas flow
Research Division:Mathematical Sciences
Research Group:Applied Mathematics
Research Field:Applied Mathematics not elsewhere classified
Objective Division:Expanding Knowledge
Objective Group:Expanding Knowledge
Objective Field:Expanding Knowledge in the Mathematical Sciences
Author:Paul, RA (Mr Rhys Paul)
Author:Forbes, LK (Professor Larry Forbes)
ID Code:114886
Year Published:2016
Deposited By:Mathematics and Physics
Deposited On:2017-03-01
Last Modified:2017-11-01
Downloads:0

Repository Staff Only: item control page