eCite Digital Repository

The Australo-Antarctic Columbia to Gondwana transition

Citation

Aitken, ARA and Betts, PG and Young, DA and Blankenship, DD and Roberts, JL and Siegert, MJ, The Australo-Antarctic Columbia to Gondwana transition, Gondwana Research, 29, (1) pp. 136-152. ISSN 1342-937X (2016) [Refereed Article]

Copyright Statement

© 2014 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

DOI: doi:10.1016/j.gr.2014.10.019

Abstract

From the Mesoproterozoic to Cambrian, Australo-Antarctica was characterised by tectonic reconfiguration as part of the supercontinents Columbia, Rodinia and Gondwana. New tectonic knowledge of the Wilkes Land region of Antarctica allows Australo-Antarctic tectonic linkages to be resolved through reconstruction into ca. 160 Ma Gondwana. We also resolve 330 ± 30 km of sinistral strike-slip offset on the > 3000 km long Mundrabilla-Frost Shear Zone and 260 ± 20 km of dextral offset on the > 1000 km long Aurora Fault to reconstruct the ca. 1150 Ma geometry of Australo-Antarctica. Using this revised geometry, we derive the first model of the Columbia to Gondwana reconfiguration process that is geometrically constrained to ~ 100 km scale. In this model, early Mesoproterozoic tectonics is driven by two opposing subduction systems. A dominantly west-dipping subduction zone existed at the eastern margin of Australo-Antarctica until ca. 1.55–1.50 Ga. A predominantly east-dipping subduction zone operated at the western margin of the Mawson Craton from ca. 1.70 Ga to ca. 1.42 Ga. The latter caused gradual westwards motion and clockwise rotation of the Mawson Craton relative to the West and North Australian Craton and the accretion of a series of continental ribbons now preserved in the Musgrave Province and its southern extensions. A mid-Mesoproterozoic switch to predominantly west-dipping subduction beneath the West Australian Craton brought about the final closure of the Mawson Craton with the North and West Australian Craton along the Rodona-Totten Shear Zone. Convergence was achieved prior to 1.31 Ga, but final collision may not have occurred until ca. 1.29 Ga. Post-1.29 Ga intraplate activity involved prolonged high-temperature orogenesis from 1.22 to 1.12 Ga, and significant movement on the Mundrabilla-Frost Shear Zone between 1.13 and 1.09 Ga, perhaps in response to the assembly of Rodinia at ca. 1.1 Ga. The Australo-Antarctic Craton was amalgamated with Indo-Antarctica along the Indo-Australo-Antarctic Suture (IAAS) and Kuunga Orogeny, probably in the latest Neoproterozoic to early Cambrian.

Item Details

Item Type:Refereed Article
Keywords:Australia, Antarctica, Columbia, Rodinia, Gondwana
Research Division:Earth Sciences
Research Group:Geology
Research Field:Tectonics
Objective Division:Expanding Knowledge
Objective Group:Expanding Knowledge
Objective Field:Expanding Knowledge in the Earth Sciences
Author:Roberts, JL (Dr Jason Roberts)
ID Code:114885
Year Published:2016
Web of Science® Times Cited:15
Deposited By:CRC-Antarctic Climate & Ecosystems
Deposited On:2017-03-01
Last Modified:2017-11-03
Downloads:0

Repository Staff Only: item control page