University of Tasmania
Browse

File(s) under permanent embargo

Oxygen modulates human embryonic stem cell metabolism in the absence of changes in self-renewal

journal contribution
posted on 2023-05-19, 02:07 authored by Harvey, AJ, Rathjen, J, Yu, LJ, Gardner, DK
Human embryonic stem (ES) cells are routinely cultured under atmospheric oxygen (~20%), a concentration that is known to impair embryo development in vitro and is likely to be suboptimal for maintaining human ES cells compared with physiological (~5%) oxygen conditions. Conflicting reports exist on the effect of oxygen during human ES cell culture and studies have been largely limited to characterisation of typical stem cell markers or analysis of global expression changes. This study aimed to identify physiological markers that could be used to evaluate the metabolic impact of oxygen on the MEL-2 human ES cell line after adaptation to either 5% or 20% oxygen in extended culture. ES cells cultured under atmospheric oxygen displayed decreased glucose consumption and lactate production when compared with those cultured under 5% oxygen, indicating an overall higher flux of glucose through glycolysis under physiological conditions. Higher glucose utilisation at 5% oxygen was accompanied by significantly increased expression of all glycolytic genes analysed. Analysis of amino acid turnover highlighted differences in the consumption of glutamine and threonine and in the production of proline. The expression of pluripotency and differentiation markers was, however, unaltered by oxygen and no observable difference in proliferation between cells cultured in 5% and 20% oxygen was seen. Apoptosis was elevated under 5% oxygen conditions. Collectively these data suggest that culture conditions, including oxygen concentration, can significantly alter human ES cell physiology with coordinated changes in gene expression, in the absence of detectable alterations in undifferentiated marker expression.

History

Publication title

Reproduction, Fertility and Development

Volume

28

Issue

4

Pagination

446-458

ISSN

1031-3613

Department/School

Menzies Institute for Medical Research

Publisher

CSIRO Publishing

Place of publication

150 Oxford St, Po Box 1139, Collingwood, Australia, Victoria, 3066

Rights statement

Copyright 2016 CSIRO

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the biological sciences

Usage metrics

    University Of Tasmania

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC