University of Tasmania
Browse
Moreau_et_al_2016_Sea_ice_Carbon_pump.pdf (4.87 MB)

Assessment of the sea-ice carbon pump: insights from a three-dimensional ocean-sea-ice biogeochemical model (NEMO-LIM-PISCES)

Download (4.87 MB)
journal contribution
posted on 2023-05-19, 01:55 authored by Sebastien MoreauSebastien Moreau, Vancoppenolle, M, Bopp, L, Aumont, O, Madec, G, Delille, B, Tison, J-T, Barriat, P-Y, Goosse, H
The role of sea ice in the carbon cycle is minimally represented in current Earth System Models (ESMs). Among potentially important flaws, mentioned by several authors and generally overlooked during ESM design, is the link between sea-ice growth and melt and oceanic dissolved inorganic carbon (DIC) and total alkalinity (TA). Here we investigate whether this link is indeed an important feature of the marine carbon cycle misrepresented in ESMs. We use an ocean general circulation model (NEMO-LIM-PISCES) with sea-ice and marine carbon cycle components, forced by atmospheric reanalyses, adding a first-order representation of DIC and TA storage and release in/from sea ice. Our results suggest that DIC rejection during sea-ice growth releases several hundred Tg C yr−1 to the surface ocean, of which < 2% is exported to depth, leading to a notable but weak redistribution of DIC towards deep polar basins. Active carbon processes (mainly CaCO3 precipitation but also ice-atmosphere CO2 fluxes and net community production) increasing the TA/DIC ratio in sea-ice modified ocean-atmosphere CO2 fluxes by a few Tg C yr−1 in the sea-ice zone, with specific hemispheric effects: DIC content of the Arctic basin decreased but DIC content of the Southern Ocean increased. For the global ocean, DIC content increased by 4 Tg C yr−1 or 2 Pg C after 500 years of model run. The simulated numbers are generally small compared to the present-day global ocean annual CO2 sink (2.6 ± 0.5 Pg C yr−1). However, sea-ice carbon processes seem important at regional scales as they act significantly on DIC redistribution within and outside polar basins. The efficiency of carbon export to depth depends on the representation of surface-subsurface exchanges and their relationship with sea ice, and could differ substantially if a higher resolution or different ocean model were used.

History

Publication title

Elementa

Volume

4

Article number

122

Number

122

Pagination

1-14

ISSN

2325-1026

Department/School

Institute for Marine and Antarctic Studies

Publisher

BioOne

Place of publication

United States

Rights statement

Copyright 2016 Moreau et al. Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/

Repository Status

  • Open

Socio-economic Objectives

Expanding knowledge in the mathematical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC