University of Tasmania
Browse

File(s) under permanent embargo

Alternative pathways of apoptosis induced by methylprednisolone and valinomycin analyzed by flow cytometry

journal contribution
posted on 2023-05-19, 00:08 authored by Deckers, CL, Alan Lyons, Samuel, K, Sanderson, A, Maddy, AH
Apoptosis of murine thymocytes induced by either methylprednisolone or valinomycin was studied by flow cytometry. The apoptosis induced by methylprednisolone followed three stages: an initial decrease in cell volume, indicated by a fall in forward scatter accompanied by faint ethidium bromide staining, a second stage in which the cells became brightly stained by ethidium bromide, and a final stage when the cells were apparently less fluorescent as the nuclei disintegrated into apoptotic bodies. As the forward scatter of cells decreased there was a simultaneous depolarization of the cells and an elevation of intracellular calcium. These early changes preceded the fragmentation of the DNA which also preceded the intense staining of the cells by ethidium bromide. Methylprednisolone-induced apoptosis was inhibited by low concentrations (1 x 10(-7) M) of valinomycin and nonactin, neither of which could themselves induce apoptosis at these low concentrations. Cadmidazolium and cycloheximide arrested the program at an early stage. Okadaic acid allowed volume loss and ethidium bromide staining to proceed in the absence of DNA fragmentation. At high concentrations (1 x 10(-5) M) valinomycin induced a form of apoptosis, but nonactin only caused the cells to fragment. The valinomycin-induced apoptosis, although it involved the degradation of DNA and the disintegration of the nuclei into apoptotic bodies, differed from the methylprednisolone apoptosis as it did not involve a decrease of cell volume and was not inhibited by cycloheximide or affected by okadaic acid.

History

Publication title

Experimental Cell Research

Volume

208

Pagination

362-370

ISSN

0014-4827

Department/School

Tasmanian School of Medicine

Publisher

Academic Press Inc Elsevier Science

Place of publication

525 B St, Ste 1900, San Diego, USA, Ca, 92101-4495

Rights statement

Copyright 1993 by Academic Press, Inc. All rights of reproduction in any form reserved.

Repository Status

  • Restricted

Socio-economic Objectives

Other health not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC