eCite Digital Repository

A glaciochemical study of 120 m ice core from Mill Island, East Antarctica

Citation

Inoue, M and Curran, MAJ and Moy, AD and van Ommen, T and Fraser, AD and Phillips, HE and Goodwin, ID, A glaciochemical study of 120 m ice core from Mill Island, East Antarctica, Climate of the Past, 13 pp. 437-453. ISSN 1814-9324 (2017) [Refereed Article]


Preview
PDF
5Mb
  

Copyright Statement

Copyright Author(s) 2016. Licensed under Creative Commons Attribution 3.0 Unported (CC BY 3.0) http://creativecommons.org/licenses/by/3.0/

DOI: doi:10.5194/cp-2016-72

Abstract

A 120 m ice core was drilled on Mill Island, East Antarctica (6530 S, 10040 E) during the 2009/2010 Australian Antarctic field season. Contiguous discrete 5 cm samples were measured for hydrogen peroxide, water stable isotopes and trace ion chemistry. The ice core was annually dated using a combination of chemical species and water stable isotopes. The Mill Island ice core preserves a climate record covering 97 years from 1913 to 2009 C.E., with a mean snow accumulation of 1.35 m (ice-equivalent) per year (mIE yr−1). This northernmost East Antarctic coastal ice core site displays trace ion concentrations that are generally higher than other Antarctic ice core sites (e.g., mean sodium levels were 254 μEq L−1). The trace ion record at Mill Island is characterised by a unique and complex chemistry record with three distinct regimes identified. The trace ion record in Regime A displays clear seasonality from 2000 to 2009 C.E.; Regime B displays elevated concentrations with no seasonality from 1934 to 2000 C.E.; and Regime C displays relatively low concentrations with seasonality from 1913 to 1934 C.E. Sea salts were compared with instrumental data, including atmospheric models and satellite-derived sea ice concentration, to investigate influences on the Mill Island ice core record. The mean annual sea salt record does not correlate with wind speed. Instead, sea ice concentration to the east of Mill Island likely influences the annual mean sea salt record. A mechanism involving formation of frost flowers on sea ice is proposed to explain the extremely high sea salt concentration. The Mill Island ice core records are unexpectedly complex, with strong modulation of the trace chemistry on long timescales.

Item Details

Item Type:Refereed Article
Keywords:Mill Island, East Antarctica, ice core, past climate
Research Division:Earth Sciences
Research Group:Physical Geography and Environmental Geoscience
Research Field:Glaciology
Objective Division:Environment
Objective Group:Climate and Climate Change
Objective Field:Climate Variability (excl. Social Impacts)
Author:Inoue, M (Ms Mana Inoue)
Author:Curran, MAJ (Dr Mark Curran)
Author:Moy, AD (Dr Andrew Moy)
Author:van Ommen, T (Dr Tas van Ommen)
Author:Fraser, AD (Dr Alex Fraser)
Author:Phillips, HE (Dr Helen Phillips)
ID Code:111876
Year Published:2017 (online first 2016)
Deposited By:Centre for Oceans and Cryosphere
Deposited On:2016-10-12
Last Modified:2017-11-09
Downloads:52 View Download Statistics

Repository Staff Only: item control page