eCite Digital Repository

On the nature of the delayed 'inhibitory' cueing effects generated by uninformative arrows at fixation


Hilchey, MD and Satel, J and Ivanoff, J and Klein, RM, On the nature of the delayed 'inhibitory' cueing effects generated by uninformative arrows at fixation, Psychonomic bulletin & review, 20, (3) pp. 593-600. ISSN 1069-9384 (2013) [Refereed Article]

Copyright Statement

Copyright 2013 Psychonomic Society, Inc.

DOI: doi:10.3758/s13423-013-0376-5


When the interval between a spatially uninformative arrow and a visual target is short (<500 ms), response times (RTs) are fastest when the arrow points to the target. When this interval exceeds 500 ms, there is a near-universal absence of an effect of the arrow on RTs. Contrary to this expected pattern of results, Taylor and Klein (J Exp Psychol Hum Percept Perform 26:1639-1656, 2000) observed that RTs were slowest when a to-be-localized visual target occurred in the direction of a fixated arrow presented 1 s earlier (i.e., an "inhibitory" Cueing effect; ICE). Here we examined which factor(s) may have allowed the arrow to generate an ICE. Our experiments indicated that the ICE was a side effect of subthreshold response activation attributable to a task-induced association between the arrow and a keypress response. Because the cause of this ICE was more closely related to subthreshold keypress activation than to oculomotor activation, we considered that the effect might be more similar to the negative compatibility effect (NCE) than to inhibition of return (IOR). This similarity raises the possibility that classical IOR, when caused by a spatially uninformative peripheral onset event and measured by a keypress response to a subsequent onset, might represent, in part, another instance of an NCE. Serendipitously, we discovered that context (i.e., whether an uninformative peripheral onset could occur at the time of an uninformative central arrow) ultimately determined whether the "inhibitory" aftermath of automatic response activation would affect output or input pathways.

Item Details

Item Type:Refereed Article
Research Division:Psychology
Research Group:Cognitive and computational psychology
Research Field:Memory and attention
Objective Division:Expanding Knowledge
Objective Group:Expanding knowledge
Objective Field:Expanding knowledge in psychology
UTAS Author:Satel, J (Dr Jason Satel)
ID Code:111169
Year Published:2013
Web of Science® Times Cited:11
Deposited By:Psychology
Deposited On:2016-09-01
Last Modified:2017-10-31

Repository Staff Only: item control page