eCite Digital Repository

A review of marine geomorphometry, the quantitative study of the seafloor

Citation

Lecours, V and Dolan, MFJ and Micallef, A and Lucieer, VL, A review of marine geomorphometry, the quantitative study of the seafloor, Hydrology and Earth System Sciences, 20 pp. 3207-3244. ISSN 1027-5606 (2016) [Refereed Article]


Preview
PDF
10Mb
  

Copyright Statement

Copyright 2016 The Authors Licensed under Creative Commons Attribution 3.0 Unported (CC BY 3.0) https://creativecommons.org/licenses/by/3.0/

DOI: doi:10.5194/hess-20-3207-2016

Abstract

Geomorphometry, the science of quantitative terrain characterization, has traditionally focused on the investigation of terrestrial landscapes. However, the dramatic increase in the availability of digital bathymetric data and the increasing ease by which geomorphometry can be investigated using geographic information systems (GISs) and spatial analysis software has prompted interest in employing geomorphometric techniques to investigate the marine environment. Over the last decade or so, a multitude of geomorphometric techniques (e.g. terrain attributes, feature extraction, automated classification) have been applied to characterize seabed terrain from the coastal zone to the deep sea. Geomorphometric techniques are, however, not as varied, nor as extensively applied, in marine as they are in terrestrial environments. This is at least partly due to difficulties associated with capturing, classifying, and validating terrain characteristics underwater. There is, nevertheless, much common ground between terrestrial and marine geomorphometry applications and it is important that, in developing marine geomorphometry, we learn from experiences in terrestrial studies. However, not all terrestrial solutions can be adopted by marine geomorphometric studies since the dynamic, four-dimensional (4-D) nature of the marine environment causes its own issues throughout the geomorphometry workflow. For instance, issues with underwater positioning, variations in sound velocity in the water column affecting acoustic-based mapping, and our inability to directly observe and measure depth and morphological features on the seafloor are all issues specific to the application of geomorphometry in the marine environment. Such issues fuel the need for a dedicated scientific effort in marine geomorphometry.

This review aims to highlight the relatively recent growth of marine geomorphometry as a distinct discipline, and offers the first comprehensive overview of marine geomorphometry to date. We address all the five main steps of geomorphometry, from data collection to the application of terrain attributes and features. We focus on how these steps are relevant to marine geomorphometry and also highlight differences and similarities from terrestrial geomorphometry. We conclude with recommendations and reflections on the future of marine geomorphometry. To ensure that geomorphometry is used and developed to its full potential, there is a need to increase awareness of (1) marine geomorphometry amongst scientists already engaged in terrestrial geomorphometry, and of (2) geomorphometry as a science amongst marine scientists with a wide range of backgrounds and experiences.

Item Details

Item Type:Refereed Article
Keywords:geomorphometry, GIS
Research Division:Engineering
Research Group:Geomatic Engineering
Research Field:Geospatial Information Systems
Objective Division:Environment
Objective Group:Ecosystem Assessment and Management
Objective Field:Ecosystem Assessment and Management of Marine Environments
Author:Lucieer, VL (Dr Vanessa Lucieer)
ID Code:110791
Year Published:2016
Web of Science® Times Cited:15
Deposited By:Ecology and Biodiversity
Deposited On:2016-08-15
Last Modified:2017-11-08
Downloads:47 View Download Statistics

Repository Staff Only: item control page