eCite Digital Repository

Effects of enhanced temperature and ultraviolet B radiation on a natural plankton community of the Beagle Channel (southern Argentina): a mesocosm study

Citation

Moreau, S and Mostajir, B and Almandoz, GO and Demers, S and Hernando, M and Lemarchand, K and Lionard, M and Mercier, B and Roy, S and Schloss, IR and Thyssen, M and Ferreyra, GA, Effects of enhanced temperature and ultraviolet B radiation on a natural plankton community of the Beagle Channel (southern Argentina): a mesocosm study, Aquatic Microbial Ecology, 72, (2) pp. 155-173. ISSN 0948-3055 (2014) [Refereed Article]

Copyright Statement

Inter-Research 2014

DOI: doi:10.3354/ame01694

Abstract

Marine planktonic communities can be affected by increased temperatures associated with global climate change, as well as by increased ultraviolet B radiation (UVBR, 280-320 nm) through stratospheric ozone layer thinning. We studied individual and combined effects of increased temperature and UVBR on the plankton community of the Beagle Channel, southern Patagonia, Argentina. Eight 2 m3 mesocosms were exposed to 4 treatments (with 2 replicates) during 10 d: (1) control (natural temperature and UVBR), (2) increased UVBR (simulating a 60% decrease in stratospheric ozone layer thickness), (3) increased temperature (+ 3C), and (4) simultaneous increased temperature and UVBR (60% decrease in stratospheric ozone; + 3C). Two distinct situations were observed with regard to phytoplankton biomass: bloom (Days 1-4) and post-bloom (Days 5-9). Significant decreases in micro-sized diatoms (>20 m), bacteria, chlorophyll a, and particulate organic carbon concentrations were observed during the post-bloom in the enhanced temperature treatments relative to natural temperature, accompanied by significant increases in nanophytoplankton (10-20 m, mainly prymnesiophytes). The decrease in micro-sized diatoms in the high temperature treatment may have been caused by a physiological effect of warming, although we do not have activity measurements to support this hypothesis. Prymnesiophytes benefited from micro-sized diatom reduction in their competition for resources. The bacterial decrease under warming may have been due to a change in the dissolved organic matter release caused by the observed change in phytoplankton composition. Overall, the rise in temperature affected the structure and total biomass of the communities, while no major effect of UVBR was observed on the plankton community.

Item Details

Item Type:Refereed Article
Keywords:plankton, Patagonia, temperature, UVBR, mesocosm
Research Division:Earth Sciences
Research Group:Oceanography
Research Field:Biological Oceanography
Objective Division:Expanding Knowledge
Objective Group:Expanding Knowledge
Objective Field:Expanding Knowledge in the Mathematical Sciences
Author:Moreau, S (Dr Sebastien Moreau)
ID Code:109559
Year Published:2014
Web of Science® Times Cited:5
Deposited By:Centre for Ecology and Biodiversity
Deposited On:2016-06-22
Last Modified:2017-11-01
Downloads:0

Repository Staff Only: item control page