University of Tasmania
Browse

File(s) under permanent embargo

A First-Order, Morphological Response Model (FORM) for predicting hydrologically induced bathymetric change in coastal-plain estuaries

journal contribution
posted on 2023-05-18, 20:01 authored by Kidd, IM, Davis, J, Andrew FischerAndrew Fischer
Estuarine hydrodynamic modeling is complex, and predicting bathymetric outcomes from imposed hydrological changes requires models to encompass time periods spanning years, decades, or longer. Within this work, a first-order response model (FORM) was developed that doesn't require temporal or process components and represents a considerable computational saving compared with two-dimensional/three-dimensional morphodynamic models. FORM enables a final regime to be predicted using knowledge of only the initial regime and the causal change in the tidal prism. It builds on the power width/distance relationship (y = axn) for a simple estuary and allows for the addition of storages or tributaries. FORM was validated using data from 2004 and pre-1968 for the Petitcodiac River, New Brunswick, Canada, where considerable bathymetric change has occurred because of the Moncton Barrage. Linear regression of the modeled upper Tamar River estuary, Tasmania, Australia, revealed a significant and positive relationship between the predicted and actual estuarine widths (R2 = 0.89 p < 0.001, slope = 1.0085). Historical channel widths, representing various phases of estuarine geomorphology and development were modeled for 1830 and 1890 and were validated against data from an 1830 navigation chart. As a further validation of the 1806 result, the volume of silt accretion associated with the bathymetric change was calculated. The result (13.4 × 106 m3) was within the range of the observed volume of accretion since 1806 (10.0 × 106–15.0 × 106 m3). The model extends the applicability of existing regime models to similar coastal-plain estuaries composed of multiple tributaries, channels, and storages, regardless of synchronicity.

History

Publication title

Journal of Coastal Research

Volume

33

Pagination

468-480

ISSN

0749-0208

Department/School

Institute for Marine and Antarctic Studies

Publisher

Coastal Education & Research Foundation

Place of publication

810 East 10Th Street, Lawrence, USA, Ks, 66044

Rights statement

Copyright 2016 Coastal Education and Research Foundation, Inc.

Repository Status

  • Restricted

Socio-economic Objectives

Coastal and estuarine systems and management not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC