University of Tasmania
Browse

File(s) under permanent embargo

Modelling nutrition across organizational levels: from individuals to superorganisms

journal contribution
posted on 2023-05-18, 19:49 authored by Lihoreau, M, Buhl, J, Michael CharlestonMichael Charleston, Sword, GA, Raubenheimer, D, Simpson, SJ
The Geometric Framework for nutrition has been increasingly used to describe how individual animals regulate their intake of multiple nutrients to maintain target physiological states maximizing growth and reproduction. However, only a few studies have considered the potential influences of the social context in which these nutritional decisions are made. Social insects, for instance, have evolved extreme levels of nutritional interdependence in which food collection, processing, storage and disposal are performed by different individuals with different nutritional needs. These social interactions considerably complicate nutrition and raise the question of how nutrient regulation is achieved at multiple organizational levels, by individuals and groups. Here, we explore the connections between individual- and collective-level nutrition by developing a modelling framework integrating concepts of nutritional geometry into individual-based models. Using this approach, we investigate how simple nutritional interactions between individuals can mediate a range of emergent collective-level phenomena in social arthropods (insects and spiders) and provide examples of novel and empirically testable predictions. We discuss how our approach could be expanded to a wider range of species and social systems.

History

Publication title

Journal of Insect Physiology

Volume

69

Pagination

2-11

ISSN

0022-1910

Department/School

School of Natural Sciences

Publisher

Pergamon-Elsevier Science Ltd

Place of publication

The Boulevard, Langford Lane, Kidlington, Oxford, England, Ox5 1Gb

Rights statement

?Copyright 2014 Elsevier Ltd. All rights reserved.

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the biological sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC