University of Tasmania
Browse

File(s) under permanent embargo

Diffusion driven instability in an inhomogeneous circular domain

journal contribution
posted on 2023-05-18, 19:05 authored by May, A, Firby, PA, Andrew BassomAndrew Bassom
Classical reaction-diffusion systems have been extensively studied and are now well understood. Most of the work to date has been concerned with homogeneous models within one-dimensional or rectangular domains. However, it is recognised that in most applications nonhomogeneity, as well as other geometries, are typically more important. In this paper, we present a two chemical reaction-diffusion process which is operative within a circular region and the model is made nonhomogeneous by supposing that one of the diffusion coefficients varies with the radial variable. Linear analysis leads to the derivation of a dispersion relation for the point of onset of instability and our approach enables both axisymmetric and nonaxisymmetric modes to be described. We apply our workings to the standard Schnackenberg activator-inhibitor model in the case when the variable diffusion coefficient takes on a step-function like profile. Some fully nonlinear simulations show that the linear analysis captures the essential details of the behaviour of the model.

History

Publication title

Mathematical and Computer Modelling

Volume

29

Issue

4

Pagination

53-66

ISSN

0895-7177

Department/School

School of Natural Sciences

Publisher

Pergamon-Elsevier Science Ltd

Place of publication

The Boulevard, Langford Lane, Kidlington, Oxford, England, Ox5 1Gb

Rights statement

Copyright 1999 Elsevier

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the mathematical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC