University of Tasmania
Browse

File(s) under permanent embargo

Large wavenumber vortices in time-periodic flows

journal contribution
posted on 2023-05-18, 19:04 authored by Blennerhassett, PJ, Denier, JP, Andrew BassomAndrew Bassom
The linear stability properties of short wavelength vortices within time–periodic flows are examined using a WKB–based asymptotic analysis. Such vortices typically have an instantaneous growth rate considerably larger than the time–scale of the underlying flow and thus have often been studied using quasi–steady techniques. A major drawback of these quasi–steady approaches is that although they are able to determine the instantaneous flow structure they are of no use in describing the evolution of the modes. It is shown how rational asymptotic analysis based on WKB ideas overcomes this deficiency and enables the form of the neutral stability curve to be obtained for short wavelengths. The technique is applied to three problems. First, the key features of the analysis are exemplified by careful consideration of a model problem which is motivated by the physical situation of the sinusoidal heating of a horizontal flat plate bounding a semi–infinite layer of fluid. The governing linearized stability equations take the form of a system which is sixth order in the spatial variable and second order in time; however, the important features of this system are captured by our model which is only second order in the spatial coordinate and first order in time. The second physically important flow examined is the motion induced in a viscous fluid surrounding a long torsionally oscillating cylinder (a curved Stokes flow). Detailed asymptotic and numerical studies of both the model and the two physically motivated flows are undertaken and it is shown how the analytical results provide good qualitative agreement with the numerical findings at quite modest wavenumbers. The methodology adopted here may be used as a basis for the rational study of the stability properties of other time–periodic flows. A key result forthcoming from this study is the demonstration that the first few terms in the relevant high wavenumber form of the neutral curve for modes in an oscillatory flow may be derived relatively quickly with minimal computational effort.

History

Publication title

Proceedings of the Royal Society of London A

Volume

454

Issue

1978

Pagination

2689-2722

ISSN

1364-5021

Department/School

School of Natural Sciences

Publisher

Royal Soc London

Place of publication

6 Carlton House Terrace, London, England, Sw1Y 5Ag

Rights statement

Copyright 1998 The Royal Society

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the mathematical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC