eCite Digital Repository

Sensitivity of Smoothed-Particle Hydrodynamic Parameters on Slamming Simulations

Citation

Sasson, M and Chai, S and Rafieshahraki, J and Jin, Y, Sensitivity of Smoothed-Particle Hydrodynamic Parameters on Slamming Simulations, Offshore Technology Conference Asia (OTC Asia) 2016, 22-25 March 2016, Kuala Lumpur, Malaysia, pp. 1-9. ISBN 978-1-61399-391-0 (2016) [Non Refereed Conference Paper]


Preview
PDF
Pending copyright assessment - Request a copy
1Mb
  

DOI: doi:10.4043/26510-MS

Abstract

The oil and gas industry requires complex subsea infrastructure in order to develop offshore oil and gas fields. Upon installation, these components may encounter high slamming loads, stemming from impact with the water surface. This paper utilises Smoothed Particle Hydrodynamics to quantify these loads on a free-falling object. The investigation is interested in conducting a parameter study and determining the effect of varying simulation parameters on the prediction of slamming event kinematics and forces. The surface impact of a 2D freefalling wedge was simulated, with the results being compared to an experimental investigation. It was found through the parameters that particle resolution and the size of the SPH particle kernel are very important, whilst the diffusion terms do not play an important role. The latter is due to the very transient nature of slamming events, which do not allow sufficient time for diffusion in the domain. The close correlation of numerical and experimental results, along with the robustness and quick set up of SPH slamming simulations, indicate that SPH is a promising method of modelling more complicated slamming problems, which may involve more intricate impacting structures.

Item Details

Item Type:Non Refereed Conference Paper
Keywords:Smooth particle hydrodynamics, slamming load
Research Division:Engineering
Research Group:Maritime Engineering
Research Field:Ocean Engineering
Objective Division:Energy
Objective Group:Mining and Extraction of Energy Resources
Objective Field:Oil and Gas Extraction
Author:Sasson, M (Mr Marcus Sasson)
Author:Chai, S (Associate Professor Shuhong Chai)
Author:Rafieshahraki, J (Mr Jalal Rafieshahraki)
Author:Jin, Y (Mr Yuting Jin)
ID Code:107804
Year Published:2016
Deposited By:NC Maritime Engineering and Hydrodynamics
Deposited On:2016-03-24
Last Modified:2016-05-03
Downloads:0

Repository Staff Only: item control page