eCite Digital Repository

Rutin, a flavonoid with antioxidant activity, improves plant salinity tolerance by regulating K+ retention and Na+ exclusion from leaf mesophyll in quinoa and broad beans

Citation

Ismail, H and Maksimovic, JD and Maksimovic, V and Shabala, L and Zivanovic, BD and Tian, Y and Jacobsen, S-E and Shabala, S, Rutin, a flavonoid with antioxidant activity, improves plant salinity tolerance by regulating K+ retention and Na+ exclusion from leaf mesophyll in quinoa and broad beans, Functional Plant Biology, 43, (1) pp. 75-86. ISSN 1445-4408 (2016) [Refereed Article]

Copyright Statement

Copyright 2016 CSIRO

DOI: doi:10.1071/FP15312

Abstract

The causal relationship between salinity and oxidative stress tolerance is well established, but specific downstream targets and the role of specific antioxidant compounds in controlling cellular ionic homeostasis remains elusive. In this work, we have compared antioxidant profiles of leaves of two quinoa genotypes contrasting in their salt tolerance, with the aim of understanding the role of enzymatic and non-enzymatic antioxidants in salinity stress tolerance. Only changes in superoxide dismutase activity were correlated with plant adaptive responses to salinity. Proline accumulation played no major role in either osmotic adjustment or in the tissue tolerance mechanism. Among other non-enzymatic antioxidants, rutin levels were increased by over 25 fold in quinoa leaves. Exogenous application of rutin to glycophyte bean leaves improved tissue tolerance and reduced detrimental effects of salinity on leaf photochemistry. Electrophysiological experiments revealed that these beneficial effects were attributed to improved potassium retention and increased rate of Na+ pumping from the cell. The lack of correlation between rutin-induced changes in K+ and H+ fluxes suggest that rutin accumulation in the cytosol scavenges hydroxyl radical formed in response to salinity treatment thus preventing K+ leak via one of ROS-activated K+ efflux pathways, rather than controlling K+ flux via voltage-gated K+-permeable channels.

Item Details

Item Type:Refereed Article
Keywords:salinity, potassium, sodium, mesophyll, sequestration
Research Division:Biological Sciences
Research Group:Plant Biology
Research Field:Plant Physiology
Objective Division:Expanding Knowledge
Objective Group:Expanding Knowledge
Objective Field:Expanding Knowledge in the Environmental Sciences
Author:Ismail, H (Dr Hebatallah Ismail)
Author:Shabala, L (Dr Lana Shabala)
Author:Zivanovic, BD (Dr Branka Zivanovic)
Author:Tian, Y (Ms Yu Tian)
Author:Jacobsen, S-E (Associate Professor Sven-Erik Jacobsen)
Author:Shabala, S (Professor Sergey Shabala)
ID Code:107577
Year Published:2016
Web of Science® Times Cited:10
Deposited By:Tasmanian Institute of Agriculture
Deposited On:2016-03-18
Last Modified:2017-11-02
Downloads:0

Repository Staff Only: item control page