eCite Digital Repository

Submarine record of volcanic island construction and collapse in the Lesser Antilles arc: first scientific drilling of submarine volcanic island landslides by IODP Expedition 340


Le Friant, A and Ishizuka, O and Boudon, G and Palmer, MR and Talling, PJ and Villemant, B and Adachi, T and Aljahdali, M and Breitkreuz, C and Brunet, M and Caron, B and Coussens, M and Deplus, C and Endo, D and Feuillet, N and Fraas, AJ and Fujinawa, A and Hart, MB and Hatfield, RG and Hornbach, M and Jutzeler, M and Kataoka, KS and Komorowski, J-C and Lebas, E and Lafuerza, S and Maeno, F and Manga, M and Martinez-Colon, M and McCanta, M and Morgan, S and Saito, T and Slagle, A and Sparks, S and Stinton, A and Stroncik, N and Subramanyam, KSV and Tamura, Y and Trofimovs, J and Voight, B and Wall-Palmer, D and Wang, F and Watt, SFL, Submarine record of volcanic island construction and collapse in the Lesser Antilles arc: first scientific drilling of submarine volcanic island landslides by IODP Expedition 340, Geochemistry, Geophysics, Geosystems, 16, (2) pp. 420-442. ISSN 1525-2027 (2015) [Refereed Article]


Copyright Statement

Copyright 2015 American Geophysical Union

DOI: doi:10.1002/2014GC005652


IODP Expedition 340 successfully drilled a series of sites offshore Montserrat, Martinique and Dominica in the Lesser Antilles from March to April 2012. These are among the few drill sites gathered around volcanic islands, and the first scientific drilling of large and likely tsunamigenic volcanic island-arc landslide deposits. These cores provide evidence and tests of previous hypotheses for the composition and origin of those deposits. Sites U1394, U1399, and U1400 that penetrated landslide deposits recovered exclusively seafloor sediment, comprising mainly turbidites and hemipelagic deposits, and lacked debris avalanche deposits. This supports the concepts that i/ volcanic debris avalanches tend to stop at the slope break, and ii/ widespread and voluminous failures of preexisting low-gradient seafloor sediment can be triggered by initial emplacement of material from the volcano. Offshore Martinique (U1399 and 1400), the landslide deposits comprised blocks of parallel strata that were tilted or microfaulted, sometimes separated by intervals of homogenized sediment (intense shearing), while Site U1394 offshore Montserrat penetrated a flat-lying block of intact strata. The most likely mechanism for generating these large-scale seafloor sediment failures appears to be propagation of a decollement from proximal areas loaded and incised by a volcanic debris avalanche. These results have implications for the magnitude of tsunami generation. Under some conditions, volcanic island landslide deposits composed of mainly seafloor sediment will tend to form smaller magnitude tsunamis than equivalent volumes of subaerial block-rich mass flows rapidly entering water. Expedition 340 also successfully drilled sites to access the undisturbed record of eruption fallout layers intercalated with marine sediment which provide an outstanding high-resolution data set to analyze eruption and landslides cycles, improve understanding of magmatic evolution as well as offshore sedimentation processes.

Item Details

Item Type:Refereed Article
Keywords:Montserrat, IODP, Expedition 340, debris avalanche
Research Division:Earth Sciences
Research Group:Geology
Research Field:Volcanology
Objective Division:Expanding Knowledge
Objective Group:Expanding knowledge
Objective Field:Expanding knowledge in the earth sciences
UTAS Author:Jutzeler, M (Dr Martin Jutzeler)
ID Code:107541
Year Published:2015
Web of Science® Times Cited:40
Deposited By:Earth Sciences
Deposited On:2016-03-17
Last Modified:2017-10-30
Downloads:171 View Download Statistics

Repository Staff Only: item control page