University of Tasmania
Browse
Watt&Jutzeler New insights into landslide processes volcanic islands ROV offshore Montserrat 2015.pdf (18.93 MB)

New insights into landslide processes around volcanic islands from Remotely Operated Vehicle (ROV) observations offshore Montserrat

Download (18.93 MB)
journal contribution
posted on 2023-05-18, 18:00 authored by Watt, SFL, Martin JutzelerMartin Jutzeler, Talling, PJ, Carey, SN, Sparks, RSJ, Tucker, M, Stinton, AJ, Fisher, JK, Wall-Palmer, D, Huhnerbach, V, Moreton, SG
Submarine landslide deposits have been mapped around many volcanic islands, but interpretations of their structure, composition, and emplacement are hindered by the challenges of investigating deposits directly. Here we report on detailed observations of four landslide deposits around Montserrat collected by Remotely Operated Vehicles, integrating direct imagery and sampling with sediment core and geophysical data. These complementary approaches enable a more comprehensive view of large-scale mass-wasting processes around island-arc volcanoes than has been achievable previously. The most recent landslide occurred at 11.5–14 ka (Deposit 1; 1.7 km3) and formed a radially spreading hummocky deposit that is morphologically similar to many subaerial debris-avalanche deposits. Hummocks comprise angular lava and hydrothermally altered fragments, implying a deep-seated, central subaerial collapse, inferred to have removed a major proportion of lavas from an eruptive period that now has little representation in the subaerial volcanic record. A larger landslide (Deposit 2; 10 km3) occurred at ∼130 ka and transported intact fragments of the volcanic edifice, up to 900 m across and over 100 m high. These fragments were rafted within the landslide, and are best exposed near the margins of the deposit. The largest block preserves a primary stratigraphy of subaerial volcanic breccias, of which the lower parts are encased in hemipelagic mud eroded from the seafloor. Landslide deposits south of Montserrat (Deposits 3 and 5) indicate the wide variety of debris-avalanche source lithologies around volcanic islands. Deposit 5 originated on the shallow submerged shelf, rather than the terrestrial volcanic edifice, and is dominated by carbonate debris.

History

Publication title

Geochemistry, Geophysics, Geosystems

Volume

16

Issue

7

Pagination

2240-2261

ISSN

1525-2027

Department/School

School of Natural Sciences

Publisher

Amer Geophysical Union

Place of publication

2000 Florida Ave Nw, Washington, USA, Dc, 20009

Rights statement

Copyright 2015 American Geophysical Union

Repository Status

  • Open

Socio-economic Objectives

Expanding knowledge in the earth sciences

Usage metrics

    University Of Tasmania

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC