eCite Digital Repository

The Linear Stability of High-frequency Flow in a Torsionally Oscillating Cylinder


Blennerhassett, PJ and Bassom, AP, The Linear Stability of High-frequency Flow in a Torsionally Oscillating Cylinder, Journal of Fluid Mechanics, 576 pp. 491-505. ISSN 0022-1120 (2007) [Refereed Article]

DOI: doi:10.1017/S0022112007004831


The linear stability of the Stokes layer induced in a fluid contained within a long cylinder oscillating at high frequency about its longitudinal axis is investigated. The disturbance equations are derived using Floquet theory and the resulting system solved using pseudo-spectral methods. Both shear modes and axially periodic centripetal disturbance modes are examined and neutral stability curves and corresponding critical conditions for instability identified. For sufficiently small cylinder radius it is verified that the centripetal perturbations limit the stability of the motion but that in larger-radius configurations the shear modes associated with the Stokes layer take over this role. These results suggest a possible design, free of entry-length effects, for experiments intended to examine the breakdown of oscillatory boundary layers.

Item Details

Item Type:Refereed Article
Research Division:Mathematical Sciences
Research Group:Applied mathematics
Research Field:Theoretical and applied mechanics
Objective Division:Expanding Knowledge
Objective Group:Expanding knowledge
Objective Field:Expanding knowledge in the mathematical sciences
UTAS Author:Bassom, AP (Professor Andrew Bassom)
ID Code:107130
Year Published:2007
Web of Science® Times Cited:11
Deposited By:Mathematics and Physics
Deposited On:2016-03-04
Last Modified:2016-07-06

Repository Staff Only: item control page