University of Tasmania
Browse

File(s) under permanent embargo

Simple, quantitative method for low molecular weight dissolved organic matter extracted from natural waters based upon high performance counter-current chromatography

journal contribution
posted on 2023-05-18, 17:20 authored by Rojas, A, Sandron, S, Richard WilsonRichard Wilson, Noel DaviesNoel Davies, Paul HaddadPaul Haddad, Robert ShellieRobert Shellie, Nesterenko, PN, Brett PaullBrett Paull
A simple, high-performance counter-current chromatography method with sequential UV absorbance (254 nm) and evaporative light scattering detection (ELSD) was developed for the quantification of pre-extracted low molecular weight dissolved organic matter (DOM) extracted from natural waters. The method requires solid-phase extraction (SPE) extraction of only small volumes of water samples, here using poly(styrenedivinylbenzene)-based extraction cartridges (Varian PPL). The extracted and concentrated DOM was quantified using reversed-phase high-performance counter-current chromatography (HPCCC), with a water/methanol (5:5) mobile phase and hexane/ethyl acetate (3:7) stationary phase. The critical chromatographic parameters were optimised, applying a revolution speed of 1900 rpm and a flow-rate of 1 mL min−1. Under these conditions, 50 μL of extracted DOM solution could be injected and quantified using calibration against a reference natural dissolved material (Suwannee River), based upon UV absorbance at 254 nm and ELSD detection. Both detection methods provided excellent linearity (R2 > 0.995) for DOM across the concentration ranges of interest, with limits of detection of 4 μg ml−1 and 7 μg ml−1 for ELSD and UV absorbance, respectively. The method was validated for peak area precision (<5%), and accuracy and recovery based upon spiking seawater samples prior to extraction, together with DOM solutions post-extraction (>95% recovery). The developed method was applied to the determination of the concentration of DOM in seawater, based upon initial sample volumes as small as 20 mL.

Funding

Australian Research Council

History

Publication title

Analytica Chimica Acta

Volume

909

Pagination

129-138

ISSN

0003-2670

Department/School

School of Natural Sciences

Publisher

Elsevier BV

Place of publication

Netherlands

Rights statement

Copyright 2016 Elsevier B.V.

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the chemical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC