University of Tasmania
Browse

File(s) under permanent embargo

Porous, high capacity coatings for solid phase microextraction by sputtering

journal contribution
posted on 2023-05-18, 17:19 authored by Diwan, A, Singh, B, Roychowdhury, T, Yan, DD, Tedone, L, Nesterenko, PN, Brett PaullBrett Paull, Sevy, ET, Robert ShellieRobert Shellie, Kaykhaii, M, Linford, MR
We describe a new process for preparing porous solid phase microextraction (SPME) coatings by the sputtering of silicon onto silica fibers. The microstructure of these coatings is a function of the substrate geometry and mean free path of the silicon atoms, and the coating thickness is controlled by the sputtering time. Sputtered silicon structures on silica fibers were treated with piranha solution (a mixture of concd H2SO4 and 30% H2O2) to increase the concentration of silanol groups on their surfaces, and the nanostructures were silanized with octadecyldimethylmethoxysilane in the gas phase. The attachment of this hydrophobic ligand was confirmed by X-ray photoelectron spectroscopy and contact angle goniometry on model, planar silicon substrates. Sputtered silicon coatings adhered strongly to their surfaces, as they were able to pass the Scotch tape adhesion test. The extraction time and temperature for headspace extraction of mixtures of alkanes and alcohols on the sputtered fibers were optimized (5 min and 40 °C), and the extraction performances of SPME fibers with 1.0 or 2.0 μm of sputtered silicon were compared to those from a commercial 7 μm poly(dimethylsiloxane) (PDMS) fiber. For mixtures of alcohols, aldehydes, amines, and esters, the 2.0 μm sputtered silicon fiber yielded signals that were 3–9, 3–5, 2.5–4.5, and 1.5–2 times higher, respectively, than those of the commercial fiber. For the heavier alkanes (undecane–hexadecane), the 2.0 μm sputtered fiber yielded signals that were approximately 1.0–1.5 times higher than the commercial fiber. The sputtered fibers extracted low molecular weight analytes that were not detectable with the commercial fiber. The selectivity of the sputtered fibers appears to favor analytes that have both a hydrophobic component and hydrogen-bonding capabilities. No detectable carryover between runs was noted for the sputtered fibers. The repeatability (RSD%) for a fiber (n = 3) was less than 10% for all analytes tested, and the between-fiber reproducibility (n = 3) was 0–15%, generally 5–10%, for all analytes tested. The repeatabilities of our sputtered fibers and the commercial 7 μm PDMS fiber are essentially the same. Fibers could be used for at least 300 extractions without loss of performance. More than 50 compounds were identified in a gas chromatography–mass spectrometry headspace analysis of a real world botanical sample with the 2.0 μm fiber.

History

Publication title

Analytical Chemistry

Volume

88

Pagination

1593-1600

ISSN

0003-2700

Department/School

School of Natural Sciences

Publisher

American Chemical Society

Place of publication

United States

Rights statement

© 2015 American Chemical Society

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the chemical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC