University of Tasmania
Browse

File(s) under permanent embargo

Transition to turbulence from plane Couette flow

journal contribution
posted on 2023-05-18, 17:08 authored by Lawrence ForbesLawrence Forbes
Modelling fluid turbulence is perhaps one of the hardest problems in Applied Mathematics. In a recent paper, the author argued that the classical Navier–Stokes equation is not sufficient to describe the transition to turbulence, but that a Reiner–Rivlin type equation is needed instead. This is explored here for the simplest of all viscous fluid flows, the Couette flow, which is a simple shear between two moving plates. It is found that at high wavenumbers, the transition to unstable flow at the critical Reynolds number is characterized by a large number of eigenvalues of the Orr–Sommerfeld equation moving into the unstable zone essentially simultaneously. This would generate high-dimensional chaos almost immediately, and is a suggested mechanism for the transition to turbulence. Stability zones are illustrated for the flow, and a simple asymptotic solution confirms some of the features of these numerical results.

Funding

Australian Research Council

History

Publication title

The ANZIAM Journal

Volume

57

Pagination

89-113

ISSN

1446-1811

Department/School

School of Natural Sciences

Publisher

Australian Mathematics Publ Assoc Inc

Place of publication

Mathematics Dept Australian National Univ, Canberra, Australia, Act, 0200

Rights statement

Copyright 2015 Australian Mathematical Society

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the mathematical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC