University of Tasmania
Browse
J. Exp. Bot.-2016-Foo-2413-24.pdf (12.59 MB)

Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea

Download (12.59 MB)
journal contribution
posted on 2023-05-18, 17:01 authored by Eloise FooEloise Foo, Erin McAdam, James WellerJames Weller, James ReidJames Reid
The regulation of arbuscular mycorrhizal development and nodulation involves complex interactions between the plant and its microbial symbionts. In this study, we use the recently identified ethylene-insensitive ein2 mutant in pea (Pisum sativum L.) to explore the role of ethylene in the development of these symbioses. We show that ethylene acts as a strong negative regulator of nodulation, confirming reports in other legumes. Minor changes in gibberellin1 and indole-3-acetic acid levels in ein2 roots appear insufficient to explain the differences in nodulation. Double mutants produced by crosses between ein2 and the severely gibberellin-deficient na and brassinosteroid-deficient lk mutants showed increased nodule numbers and reduced nodule spacing compared with the na and lk single mutants, but nodule numbers and spacing were typical of ein2 plants, suggesting that the reduced number of nodules in na and lk plants is largely due to the elevated ethylene levels previously reported in these mutants. We show that ethylene can also negatively regulate mycorrhizae development when ethylene levels are elevated above basal levels, consistent with a role for ethylene in reducing symbiotic development under stressful conditions. In contrast to the hormone interactions in nodulation, ein2 does not override the effect of lk or na on the development of arbuscular mycorrhizae, suggesting that brassinosteroids and gibberellins influence this process largely independently of ethylene.

Funding

Australian Research Council

History

Publication title

Journal of Experimental Botany

Volume

67

Issue

8

Pagination

2413-2424

ISSN

0022-0957

Department/School

School of Natural Sciences

Publisher

Oxford Univ Press

Place of publication

Great Clarendon St, Oxford, England, Ox2 6Dp

Rights statement

Copyright 2016 The Author. Licensed under Creative Commons Attribution 3.0 Unported (CC BY 3.0) http://creativecommons.org/licenses/by/3.0/

Repository Status

  • Open

Socio-economic Objectives

Environmentally sustainable plant production not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC