University of Tasmania
Browse

File(s) not publicly available

The LS locus of pea encodes the gibberellin biosynthesis enzyme ent-kaurene synthase A

journal contribution
posted on 2023-05-16, 10:39 authored by Ait-Ali, T, Swain, SM, James ReidJames Reid, Sun, TP, Kamiya, Y
Gibberellins (GAs) are hormones required for several aspects of plant development, including internode elongation and seed development in pea (Pisum sativum L). The first committed step in the GA biosynthesis pathway is the conversion of geranylgeranyl diphosphate (GGDP) to ent-kaurene via copalyl diphosphate (CDP). These two reactions are catalyzed by the cyclases ent-kaurene synthase A (KSA) and ent-kaurene synthase B (KSB), respectively. Previous genetic and biochemical analysis of the GA-responsive ls-1 mutant of pea suggested that GA levels are reduced in a developmental- and organ-specific manner due to reduced GA biosynthesis. Analysis of cell-free enzyme preparations from WT and ls-1 embryos at contact point reveals that ls-1 reduces the activity of KSA but not KSB. To characterize the ls-1 mutation in more detail, a cDNA coding for a pea KSA was cloned and shown to be encoded by the LS locus. The ls-1 mutation results from an intronic G to A substitution that causes impaired RNA splicing. To determine the activity of the KSAs encoded by the LS and ls-1 alleles, a new in vitro assay for combined KSA and KSB activity has been developed using the KSB gene of pumpkin. Using recombinant WT KSA and KSB fusion proteins, GGDP is converted to ent-kaurene in vitro. Based on the sequence of RT-PCR products, three different truncated KSA proteins are predicted to exist in ls-1 plants. The most abundant mutant KSA protein does not possess detectable activity in vitro. Nevertheless, the ls-1 allele is not null and is able to encode at least a partially functional KSA since a more severe ls allele has been identified. The ls-1 mutation has played a key role in identifying a role for GAs in pea seed development in the first few days after fertilization, but not in older seeds. KSA expression in seeds is developmentally regulated and parallels overall GA biosynthesis, suggesting that KSA expression may play an important role in the regulation of GA biosynthesis and seed development.

History

Publication title

The Plant Journal

Volume

11

Pagination

443-454

ISSN

0960-7412

Department/School

School of Natural Sciences

Publisher

Blackwell Publishing Ltd

Place of publication

Blackwell, UK

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the environmental sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC