University of Tasmania
Browse

File(s) under permanent embargo

Novel elements of the chondrocyte stress response identified using an in vitro model of mouse cartilage degradation

journal contribution
posted on 2023-05-18, 16:48 authored by Richard WilsonRichard Wilson, Golub, SB, Rowley, L, Angelucci, C, Karpievitch, YV, Bateman, JF, Fosang, AJ
The destruction of articular cartilage in osteoarthritis involves chondrocyte dysfunction and imbalanced extracellular matrix (ECM) homeostasis. Pro-inflammatory cytokines such as interleukin-1α (IL-1α) contribute to osteoarthritis pathophysiology, but the effects of IL-1α on chondrocytes within their tissue microenvironment have not been fully evaluated. To redress this we used label-free quantitative proteomics to analyze the chondrocyte response to IL-1α within a native cartilage ECM. Mouse femoral heads were cultured with and without IL-1α, and both the tissue proteome and proteins released into the media were analyzed. New elements of the chondrocyte response to IL-1α related to cellular stress included markers for protein misfolding (Armet, Creld2, and Hyou1), enzymes involved in glutathione biosynthesis and regeneration (Gstp1, Gsto1, and Gsr), and oxidative stress proteins (Prdx2, Txn, Atox1, Hmox1, and Vnn1). Other proteins previously not associated with the IL-1α response in cartilage included ECM components (Smoc2, Kera, and Crispld1) and cysteine proteases (cathepsin Z and legumain), while chondroadherin and cartilage-derived C-type lectin (Clec3a) were identified as novel products of IL-1α-induced cartilage degradation. This first proteome-level view of the cartilage IL-1α response identified candidate biomarkers of cartilage destruction and novel targets for therapeutic intervention in osteoarthritis.

History

Publication title

Journal of Proteome Research

Volume

15

Pagination

1033-1050

ISSN

1535-3907

Publisher

American Chemical Society

Place of publication

1155 16th St. NW, Washington, DC 20036

Rights statement

© 2016 American Chemical Society

Repository Status

  • Restricted

Socio-economic Objectives

Clinical health not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC