University of Tasmania
Browse

File(s) under permanent embargo

Swiftness of biomorphodynamics in Lilliput- to Giant-sized rivers and deltas

journal contribution
posted on 2023-05-18, 16:38 authored by Kleinhans, MG, Braudrick, C, van Dijk, WM, van de Lageweg, WI, Teske, R, van Oorschot, M
Physical experiments of self-formed river channels and floodplains with live vegetation are pathways for understanding that complement numerical modelling. Recent experiments succeeded in creating braided rivers and dynamic meandering systems with clastic and vegetated floodplains. However, application of the insights gained from such experiments to natural systems depends on understanding potential scale effects, temporal, and spatial. Here we combine review, analysis, and experiments to identify fundamental problems of biomorphological river pattern formation that are open for further research in experiments. We first show by review and analysis that physics-based, linear bar theory predicts negligible spatial scale effects in bar and bend wavelength relative to channel width. Time scaling, on the other hand, remains problematic because it integrates multiple processes of sediment transport, floodplain formation, and bank failure affected by bank stratigraphy and riparian vegetation. As a tentative solution, we secondly present experimental methods to assess bank strength effects that can be used in the design of river pattern experiments. The third issue is that riparian vegetation has often been represented in experiments by uniformly seeded sprouts of a single plant species, whilst spectacularly different patterns are obtained with contrasting seeding protocols, showing the need for other experimental procedures, and alternative riparian species. The main challenge for future experiments is better understanding of temporal scaling of biomorphodynamics.

History

Publication title

Geomorphology

Volume

244

Pagination

56-73

ISSN

0169-555X

Department/School

School of Geography, Planning and Spatial Sciences

Publisher

Elsevier Science Bv

Place of publication

Po Box 211, Amsterdam, Netherlands, 1000 Ae

Rights statement

Copyright 2015 Elsevier B.V.

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the earth sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC