University of Tasmania
Browse
014106 Thomas.pdf (283.48 kB)

The linear stability of oscillating pipe flow

Download (283.48 kB)
journal contribution
posted on 2023-05-18, 15:50 authored by Thomas, C, Andrew BassomAndrew Bassom, Blennerhassett, PJ
An investigation is made of the three-dimensional linear stability of the Stokes layer generated within a fluid contained inside a long oscillating cylinder. Both longitudinal and torsional vibrations are examined and the system of disturbance equations derived using Floquet theory are solved using pseudospectral methods. Critical parameters for instability are obtained for an extensive range of pipe radii and longitudinal and azimuthal wavenumbers. For sufficiently small pipe diameters, three-dimensional perturbations are sometimes found to be more unstable than their two-dimensional counterparts. In contrast, at larger radii, the three-dimensional disturbance modes are less important and the two-dimensional versions are expected to be observed in practice. These results imply constraints on experiments that are designed to exhibit shear modes in oscillatory flow.

History

Publication title

Physics of Fluids

Volume

24

Article number

014106

Number

014106

Pagination

1-10

ISSN

1070-6631

Department/School

School of Natural Sciences

Publisher

Amer Inst Physics

Place of publication

Circulation & Fulfillment Div, 2 Huntington Quadrangle, Ste 1 N O 1, Melville, USA, Ny, 11747-4501

Rights statement

Copyright 2012 American Institute of Physics

Repository Status

  • Open

Socio-economic Objectives

Expanding knowledge in the mathematical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC