University of Tasmania
Browse

File(s) under permanent embargo

Local thermal non-equilibrium effects arising from the injection of a hot fluid into a porous medium

journal contribution
posted on 2023-05-18, 15:48 authored by Rees, DAS, Andrew BassomAndrew Bassom, Siddheshwar, PG
We examine the effect of local thermal non-equilibrium on the infiltration of a hot fluid into a cold porous medium. The temperature fields of the solid porous matrix and the saturating fluid are governed by separate, but coupled, parabolic equations, forming a system governed by three dimensionless parameters. A scale analysis and numerical simulations are performed to determine the different manners in which the temperature fields evolve in time. These are supplemented by a large-time analysis showing that local thermal equilibrium between the phases is eventually attained. It is found that the thickness of the advancing thermal front is a function of the governing parameters rather than being independent of them. This has the implication that local thermal equilibrium is not equivalent to a single equation formulation of the energy equation as might have been expected. When the velocity of the infiltrating fluid is sufficiently large, the equations reduce to a hyperbolic system and a thermal shock wave is formed within the fluid phase. The strength of the shock decays exponentially with time, but the approach to local thermal equilibrium is slower and is achieved algebraically in time.

History

Publication title

Journal of Fluid Mechanics

Volume

594

Pagination

379-398

ISSN

0022-1120

Department/School

School of Natural Sciences

Publisher

Cambridge Univ Press

Place of publication

40 West 20Th St, New York, USA, Ny, 10011-4211

Rights statement

Copyright 2008 Cambridge University Press

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the mathematical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC