University of Tasmania
Browse

File(s) under permanent embargo

Functionalized polyanilines disrupt Pseudomonas aeruginosa and Staphylococcus aureus biofilms

journal contribution
posted on 2023-05-18, 15:15 authored by Gizdavic-Nikolaidis, MR, Joanne PagnonJoanne Pagnon, Ali, N, Sum, R, Noel DaviesNoel Davies, Louise RoddamLouise Roddam, Mark AmbroseMark Ambrose
The purpose of the present study was to investigate the antimicrobial effects of functionalized polyanilines (fPANIs) against stationary phase cells and biofilms of Pseudomonas aeruginosa and Staphylococcus aureus using homopolymer of sulfanilic acid (poly-SO3H) as a model. The chemically synthesized poly-SO3H was characterized using Fourier Transform Infra-Red (FTIR) and Ultraviolet-Visible (UV-Vis) spectroscopies. The molecular weight (Mw) and elemental analysis of homopolymer poly-SO3H were also examined. We found that poly-SO3H was bactericidal against stationary phase cells of P. aeruginosa and S. aureus at a concentration of 20mgml-1. Surprisingly, we discovered that the same concentration (20mgml-1) of poly-SO3H significantly disrupted and killed bacterial cells present in pre-established forty-eight hour static biofilms of these organisms, as shown by crystal violet and bacterial live/dead fluorescence staining assays. In support of these data, poly-SO3H extensively diminished the expression of bacterial genes related to biofilm formation in stationary phase cells of P. aeruginosa, and seemed to greatly reduce the amount of the quorum sensing molecule N-(3-oxododecanoyl)-l-homoserine lactone (3OC12-HSL) able to be recovered from biofilms of this organism. Furthermore, we found that poly-SO3H was able to effectively penetrate and kill cells in biofilms formed by the P. aeruginosa (AESIII) isolate derived from the sputum of a cystic fibrosis patient. Taken together, the results of the present study emphasise the broad antimicrobial activities of fPANI, and suggest that they could be developed further and used in some novel ways to construct medical devices and/or industrial equipment that are refractory to colonization by biofilm-forming bacteria.

History

Publication title

Colloids and Surfaces B: Biointerfaces

Volume

136

Pagination

666-673

ISSN

0927-7765

Department/School

Tasmanian School of Medicine

Publisher

Elsevier Science Bv

Place of publication

Netherlands

Rights statement

Copyright 2015 Elsevier B.V.

Repository Status

  • Restricted

Socio-economic Objectives

Clinical health not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC