eCite Digital Repository

Salt stress sensing and early signalling events in plant roots: current knowledge and hypothesis


Shabala, S and Wu, H and Bose, J, Salt stress sensing and early signalling events in plant roots: current knowledge and hypothesis, Plant Science, 241 pp. 109-119. ISSN 0168-9452 (2015) [Refereed Article]

Copyright Statement

Copyright 2015 Elsevier Ireland Ltd.

DOI: doi:10.1016/j.plantsci.2015.10.003


Soil salinity is a major environmental constraint to crop production. While the molecular identity and functional expression of Na+ transport systems mediating Na+ exclusion from the cytosol has been studied in detail, far less is known about the mechanisms by which plants sense high Na+ levels in the soil and the rapid signalling events that optimise plant performance under saline conditions. This review aims to fill this gap. We first discuss the nature of putative salt stress sensors, candidates which include Na+ transport systems, mechanosensory proteins, proteins with regulatory Na+ binding sites, sensing mediated by cyclic nucleotide-gated channels, purine receptors, annexin and voltage gating. We suggest that several transport proteins may be clustered together to form a microdomain in a lipid raft, allowing rapid changes in the activity of an individual protein to be translated into stress-induced Ca2+ and H2O2 signatures. The pathways of stress signalling to downstream targets are discussed, and the kinetics and specificity of salt stress signalling between glycophytes and halophytes is compared. We argue that these sensing mechanisms operate in parallel, providing plants with a robust system for decoding information about the specific nature and severity of the imposed salt stress.

Item Details

Item Type:Refereed Article
Keywords:salinity, signalling, ROS, potassium, sodium, mechanosensory proteins, Na+ binding sites, cyclic nucleotides, annexin, purine, voltage gating, membrane potential, Ca2+ signature, ROS, lipid raft, potassium, H+-ATPase
Research Division:Biological Sciences
Research Group:Plant biology
Research Field:Plant physiology
Objective Division:Expanding Knowledge
Objective Group:Expanding knowledge
Objective Field:Expanding knowledge in the environmental sciences
UTAS Author:Shabala, S (Professor Sergey Shabala)
UTAS Author:Wu, H (Mr Honghong Wu)
UTAS Author:Bose, J (Dr Jayakumar Bose)
ID Code:105131
Year Published:2015
Web of Science® Times Cited:106
Deposited By:Tasmanian Institute of Agriculture
Deposited On:2015-12-09
Last Modified:2017-11-02

Repository Staff Only: item control page