University of Tasmania
Browse
stevenson2013.pdf (2.23 MB)

Quantifying errors in coral-based ENSO estimates: toward improved forward modeling of d18O

Download (2.23 MB)
journal contribution
posted on 2023-05-18, 14:38 authored by Stevenson, S, McGregor, HV, Phipps, SJ, Fox-Kemper, B
The oxygen isotopic ratio (δ18O) in tropical Pacific coral skeletons reflects past El Niño–Southern Oscillation (ENSO) variability, but the δ18O-ENSO relationship is poorly quantified. Uncertainties arise when constructing δ18O data sets, combining records from different sites, and converting between δ18O and sea surface temperature (SST) and salinity (SSS). Here we use seasonally resolved δ18O from 1958 to 1985 at 15 tropical Pacific sites to estimate these errors and evaluate possible improvements. Observational uncertainties from Kiritimati, New Caledonia, and Rarotonga are 0.12–0.14‰, leading to errors of 8–25% on the typical δ18O variance. Multicoral syntheses using five to seven sites capture the principal components (PCs) well, but site selection dramatically influences ENSO spatial structure: Using sites in the eastern Pacific, western Pacific warm pool, and South Pacific Convergence Zone (SPCZ) captures “eastern Pacific-type” variability, while “Central Pacific-type” events are best observed by combining sites in the warm pool and SPCZ. The major obstacle to quantitative ENSO estimation is the δ18O/climate conversion, demonstrated by the large errors on both δ18O variance and the amplitude of the first principal component resulting from the use of commonly employed bivariate formulae to relate SST and SSS to δ18O. Errors likely arise from either the instrumental data used for pseudoproxy calibration or influences from other processes (δ18O advection/atmospheric fractionation, etc.). At some sites, modeling seasonal changes to these influences reduces conversion errors by up to 20%. This indicates that understanding of past ENSO dynamics using coral δ18O could be greatly advanced by improving δ18O forward models.

History

Publication title

Paleoceanography

Volume

28

Issue

4

Pagination

633-649

ISSN

0883-8305

Department/School

Institute for Marine and Antarctic Studies

Publisher

Amer Geophysical Union

Place of publication

2000 Florida Ave Nw, Washington, USA, Dc, 20009

Rights statement

Copyright 2013 American Geophysical Union

Repository Status

  • Open

Socio-economic Objectives

Climate change models

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC