University of Tasmania
Browse

File(s) under permanent embargo

Neurofilament light gene deletion exacerbates amyloid, dystrophic neurite, and synaptic pathology in the APP/PS1 transgenic model of Alzheimer's disease

Alzheimer's disease (AD) is a progressive neurodegenerative disease associated with the loss of cognitive function. Neurofilament (NF) triplet proteins, the major structural (intermediate filament) proteins of neurons, are expressed in a subset of pyramidal cells that show a high degree of vulnerability to degeneration in AD. Alterations in the NF triplet proteins in amyloid-beta (Aβ) plaque-associated dystrophic neurites (DNs) represent the first cytoskeletal aberration to occur in the neocortex in the earliest stages of AD. We generated transgenic APP/PS1 (APPswe/PSEN1dE9) mice on the neurofilament light knockout (NFL KO) background to explore the role of NFL deletion in the context of DN formation, synaptic changes, and other neuropathologic features. Our analysis demonstrated that NFL deficiency significantly increased neocortical DN pathology, Aβ deposition, synapse vulnerability, and microgliosis in APP/PS1 mice. Thus, NFs may have a role in protecting neurites from dystrophy and in regulating cellular pathways related to the generation of Aβ plaques.

History

Publication title

Neurobiology of Aging

Volume

36

Issue

10

Pagination

2757-2767

ISSN

0197-4580

Department/School

Wicking Dementia Research Education Centre

Publisher

Elsevier Science Inc

Place of publication

United States

Rights statement

Copyright 2015 Elsevier Inc.

Repository Status

  • Restricted

Socio-economic Objectives

Clinical health not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC