eCite Digital Repository

Stomatal dynamics are limited by leaf hydraulics in ferns and conifers: results from simultaneous measurements of liquid and vapour fluxes in leaves

Citation

Martins, SCV and McAdam, SAM and Deans, RM and DaMatta, FM and Brodribb, TJ, Stomatal dynamics are limited by leaf hydraulics in ferns and conifers: results from simultaneous measurements of liquid and vapour fluxes in leaves, Plant, Cell and Environment, 39, (3) pp. 694-705. ISSN 0140-7791 (2016) [Refereed Article]

Copyright Statement

Copyright 2015 John Wiley & Sons Ltd

DOI: doi:10.1111/pce.12668

Abstract

Stomatal responsiveness to vapour pressure deficit (VPD) results in continuous regulation of daytime gas-exchange directly influencing leaf water status and carbon gain. Current models can reasonably predict steady-state stomatal conductance (gs) to changes in VPD but the gs dynamics between steady-states are poorly known. Here, we used a diverse sample of conifers and ferns to show that leaf hydraulic architecture, in particular leaf capacitance, has a major role in determining the gs response time to perturbations in VPD. By using simultaneous measurements of liquid and vapour fluxes into and out of leaves, the in situ fluctuations in leaf water balance were calculated and appeared to be closely tracked by changes in gs thus supporting a passive model of stomatal control. Indeed, good agreement was found between observed and predicted gs when using a hydropassive model based on hydraulic traits. We contend that a simple passive hydraulic control of stomata in response to changes in leaf water status provides for efficient stomatal responses to VPD in ferns and conifers, leading to closure rates as fast or faster than those seen in most angiosperms.

Item Details

Item Type:Refereed Article
Keywords:leaf hydraulic conductance, leaf capacitance, stomatal conductance, vapour pressure deficit, conifers, ferns, leaf water content
Research Division:Biological Sciences
Research Group:Plant Biology
Research Field:Plant Physiology
Objective Division:Expanding Knowledge
Objective Group:Expanding Knowledge
Objective Field:Expanding Knowledge in the Biological Sciences
Author:Martins, SCV (Mr Samuel Martins)
Author:McAdam, SAM (Dr Scott McAdam)
Author:Deans, RM (Mr Ross Deans)
Author:Brodribb, TJ (Dr Tim Brodribb)
ID Code:103995
Year Published:2016
Web of Science® Times Cited:10
Deposited By:Plant Science
Deposited On:2015-10-30
Last Modified:2017-11-01
Downloads:0

Repository Staff Only: item control page