University of Tasmania
Browse

File(s) under permanent embargo

Nonlinear Gaussian Belief Network based fault diagnosis for industrial processes

journal contribution
posted on 2023-05-18, 13:36 authored by Yu, H, Faisal KhanFaisal Khan, Vikrambhai GaraniyaVikrambhai Garaniya
A Nonlinear Gaussian Belief Network (NLGBN) based fault diagnosis technique is proposed for industrial processes. In this study, a three-layer NLGBN is constructed and trained to extract useful features from noisy process data. The nonlinear relationships between the process variables and the latent variables are modelled by a set of sigmoidal functions. To take into account the noisy nature of the data, model variances are also introducedto boththeprocess variables andthe latent variables. The three-layer NLGBN is first trained with normal process data using a variational Expectation and Maximization algorithm. During real-time monitoring, the online process data samples are used to update the posterior mean of the top-layer latent variable. The absolute gradient denoted as G-index to update the posterior mean is monitored for fault detection. A multivariate contribution plot is also generated based on the G-index for fault diagnosis. The NLGBN-based technique is verified using two case studies. The results demonstrate that the proposed technique outperforms the conventional nonlinear techniques such as KPCA, KICA, SPA, and Moving Window KPCA.

History

Publication title

Journal of Process Control

Volume

35

Pagination

178-200

ISSN

0959-1524

Department/School

Australian Maritime College

Publisher

Elsevier Sci Ltd

Place of publication

The Boulevard, Langford Lane, Kidlington, Oxford, England, Oxon, Ox5 1Gb

Rights statement

Copyright 2015 Elsevier Ltd.

Repository Status

  • Restricted

Socio-economic Objectives

Environmentally sustainable energy activities not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC