eCite Digital Repository

Suppression and restoration of primordial germ cell marker gene expression in channel catfish, Ictalurus punctatus, using knockdown constructs regulated by copper transport protein gene promoters: potential for reversible transgenic sterilization

Citation

Su, B and Shang, M and Grewe, PM and Patil, JG and Peatman, E and Perera, DA and Cheng, Q and Li, C and Weng, C-C and Li, P and Liu, Z and Dunham, RA, Suppression and restoration of primordial germ cell marker gene expression in channel catfish, Ictalurus punctatus, using knockdown constructs regulated by copper transport protein gene promoters: potential for reversible transgenic sterilization, Theriogenology, 84, (9) pp. 1499-1512. ISSN 0093-691X (2015) [Refereed Article]

Copyright Statement

Copyright 2015 Elsevier Inc.

DOI: doi:10.1016/j.theriogenology.2015.07.037

Abstract

Complementary DNA overexpression and short hairpin RNA interference approaches were evaluated for decreasing expression of primordial germ cell (PGC) marker genes and thereby sterilizing channel catfish, Ictalurus punctatus, by delivering knockdown constructs driven by a constitutive promoter from yeast and a copper transport protein gene into fish embryos by electroporation. Two PGC marker genes, nanos and dead end, were the target knockdown genes, and their expressions, along with that of an off-target gene, vasa, were evaluated temporally using real-time polymerase chain reaction. Copper sulfate was evaluated as a repressor compound. Some of the constructs knocked down PGC marker gene expression, and some of the constructs were partially repressed by application of 0.1-ppm copper sulfate. When the rate of sexual maturity was compared for three-year-old broodfish that had been exposed to the sterilizing constructs during embryologic development and controls that had not been exposed, several treatments had reduced sexual maturity for the exposed fish. Of two promoter systems evaluated, the one which had been designed to be less sensitive to copper generally was more effective at achieving sterilization and more responsive to repression. Knockdown constructs based on 3′ nanos short hairpin RNA interference appeared to result in the best repression and restoration of normal sexual maturity. We conclude that these copper-based systems exhibited good potential for repressible transgenic sterilization. Optimization of this system could allow environmentally safe application of transgenic technology and might be applicable to other applications for aquatic organisms.

Item Details

Item Type:Refereed Article
Keywords:RNAi, sterilization, monosex, transgenic sterilization, RNA interference, electroporation, channel catfish embryo, primordial germ cell, gene expression
Research Division:Agricultural and Veterinary Sciences
Research Group:Fisheries Sciences
Research Field:Fish Physiology and Genetics
Objective Division:Animal Production and Animal Primary Products
Objective Group:Fisheries - Aquaculture
Objective Field:Aquaculture Fin Fish (excl. Tuna)
Author:Patil, JG (Dr Jawahar Patil)
ID Code:103083
Year Published:2015
Web of Science® Times Cited:2
Deposited By:IMAS Research and Education Centre
Deposited On:2015-09-18
Last Modified:2017-11-04
Downloads:0

Repository Staff Only: item control page