University of Tasmania
Browse
2015 BianM-BMCGenetics.pdf (1.66 MB)

A new allele of acid soil tolerance gene from a malting barley variety

Download (1.66 MB)
journal contribution
posted on 2023-05-18, 12:01 authored by Bian, M, Jin, X, Broughton, S, Zhang, X-Q, Zhou, G, Meixue ZhouMeixue Zhou, Zhang, G, Sun, D, Li, C

Background: Acid soil is a serious limitation to crop production all over the world. Toxic aluminium (Al) cations in acid soil inhibit root growth and reduce yield. Although a gene tolerant to acid soil has been identified, it has not been used in malting barley breeding, which is partly due to the acid soil tolerance gene being linked to unfavorable malting quality traits.

Results: A Brazilian malting barley variety Br2 was identified as tolerant to acid soil. A doubled haploid (DH) population was developed from a cross between Br2 and the Australian acid-sensitive cultivar Hamelin. The DH population was tested for acid soil tolerance in native acid soil and a hydroponic system with pH 4.2, pH 4.2 + Al or pH 6.5, and genotyped using SSR, DArT and gene-specific markers. A single QTL was detected for all parameters related to acid soil tolerance. The QTL was mapped to the known HvMATE location on chromosome 4H. Sequence alignment of the HvMATE gene identified 13 INDELs and 87 SNPs, where one SNP coded for a single amino acid difference between the two varieties. A gene-specific marker was developed to detect the single nucleotide polymorphism between Hamelin and Br2. This marker co-segregated with aluminium tolerance and accounted for 79 % of phenotypic variation for acid soil tolerance.

Conclusion: The present study identified a novel source of acid soil/Al tolerance from a Brazilian malting barley cultivar Br2. This variety tolerated Al toxicity but was sensitive to low pH which is similar to most other Al-tolerant varieties. A gene-specific marker Cit7 was developed based on the HvMATE gene sequence. Cit7 will improve the efficiency of molecular-assisted selection of new barley varieties with tolerance to acid soil. Multiple alleles exist for the acid soil tolerance gene on chromosome 4H, so a malting barley variety that tolerates acid soil could be developed by selecting suitable tolerant alleles. Tolerance to low pH may play an important role for barley to adapt to acid soils.

Funding

Grains Research & Development Corporation

History

Publication title

BMC Genetics

Volume

16

Article number

92

Number

92

Pagination

1-11

ISSN

1471-2156

Department/School

Tasmanian Institute of Agriculture (TIA)

Publisher

Biomed Central Ltd

Place of publication

Middlesex House, 34-42 Cleveland St, London, England, W1T 4Lb

Rights statement

© 2015 Bian et al. Licenced under Creative Commons Attribution 4.0 International (CC BY 4.0) http://creativecommons.org/licenses/by/4.0/

Repository Status

  • Open

Socio-economic Objectives

Barley

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC