University of Tasmania
Browse

File(s) under permanent embargo

Potato D-enzyme catalyzes the cyclization of amylose to produce cycloamylose, a novel cyclic glucan

journal contribution
posted on 2023-05-18, 11:28 authored by Takaha, T, Yanase, M, Takata, H, Okada, S, Steven SmithSteven Smith
Potato D-enzyme was purified from recombinant Escherichia coli, and its action on synthetic amylose (average Mr of 320,000) was analyzed. D-enzyme treatment resulted in a decrease in the ability of the amylose to form a blue complex with iodine. Analysis of the products indicated that the enzyme catalyzes an intramolecular transglycosylation reaction on amylose to produce cyclic α-1,4-glucan (cycloamylose). Confirmation of the cyclic structure was achieved by demonstrating the absence of reducing and nonreducing ends, resistance to hydrolysis by glucoamylase (an exoamylase), and by “time of flight” mass spectrometry. The degree of polymerization of cycloamylose products was determined by time of flight mass spectrometry analysis and by high-performance anion-exchange chromatography following partial acid hydrolysis of purified cycloamylose molecules and was found to range from 17 to several hundred. The yield of cycloamylose increased with time and reached >95%. D-enzyme did not act upon purified cycloamylose, but if glucose was added as an acceptor molecule, smaller cyclic and linear molecules were produced. The mechanism of the cyclization reaction, the possible role of the enzyme in starch metabolism, and the potential applications for cycloamylose are discussed.

History

Publication title

Journal of Biological Chemistry

Volume

271

Issue

6

Pagination

2902-2908

ISSN

0021-9258

Department/School

School of Natural Sciences

Publisher

Amer Soc Biochemistry Molecular Biology Inc

Place of publication

9650 Rockville Pike, Bethesda, USA, Md, 20814-3996

Rights statement

Copyright 1996 The American Society for Biochemistry and Molecular Biology Inc

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the biological sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC