University of Tasmania
Browse

File(s) under permanent embargo

Expression of glyoxylate cycle genes in cucumber roots responds to sugar supply and can be activated by shading or defoliation of the shoot

journal contribution
posted on 2023-05-18, 11:28 authored by Ismail, I, de Bellis, L, Alpi, A, Steven SmithSteven Smith
When cucumber roots are excised and incubated without a carbon source, isocitrate lyase (ICL) and malate synthase (MS) mRNAs increase significantly in amount. However, if sucrose is added to the excised roots, the mRNAs do not accumulate. Hairy roots obtained by transformation with Agrobacterium rhizogenes show the same response. Transgenic hairy roots containing the Icl and Ms gene promoters fused to the GUS reporter gene, have very low GUS activity which increases dramatically when roots are incubated in the absence of sugar, indicating regulation at the transcriptional level. Staining of sugar-deprived roots shows that GUS activity is concentrated mainly in root tips and lateral root primordia, where demand for carbohydrate is greatest. In order to determine if Icl and Ms genes are expressed in roots of whole plants under conditions which may occur in nature, cucumber plants were subjected to reduced light intensity or defoliation. In both cases increases were observed in ICL and MS mRNAs. These treatments also reduced root sugar content, consistent with the hypothesis that sugar supply could control expression of Icl and Ms genes in roots of whole plants.

History

Publication title

Plant Molecular Biology

Volume

35

Issue

5

Pagination

633-640

ISSN

0167-4412

Department/School

School of Natural Sciences

Publisher

Kluwer Academic Publ

Place of publication

Van Godewijckstraat 30, Dordrecht, Netherlands, 3311 Gz

Rights statement

Copyright 1997 Kluwer Academic Publishers

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the biological sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC