University of Tasmania
Browse

File(s) under permanent embargo

Fine and ultrafine particle decay rates in multiple homes

journal contribution
posted on 2023-05-18, 10:52 authored by Wallace, L, Kindzierski, W, Kearney, J, MacNeill, M, Heroux, M-E, Amanda WheelerAmanda Wheeler
Human exposure to particles depends on particle loss mechanisms such as deposition and filtration. Fine and ultrafine particles (FP and UFP) were measured continuously over seven consecutive days during summer and winter inside 74 homes in Edmonton, Canada. Daily average air exchange rates were also measured. FP were also measured outside each home and both FP and UFP were measured at a central monitoring station. A censoring algorithm was developed to identify indoor-generated concentrations, with the remainder representing particles infiltrating from outdoors. The resulting infiltration factors were employed to determine the continuously changing background of outdoor particles infiltrating the homes. Background-corrected indoor concentrations were then used to determine rates of removal of FP and UFP following peaks due to indoor sources. About 300 FP peaks and 400 UFP peaks had high-quality (median R(2) value >98%) exponential decay rates lasting from 30 min to 10 h. Median (interquartile range (IQR)) decay rates for UFP were 1.26 (0.82-1.83) h(-1); for FP 1.08 (0.62-1.75) h(-1). These total decay rates included, on average, about a 25% contribution from air exchange, suggesting that deposition and filtration accounted for the major portion of particle loss mechanisms in these homes. Models presented here identify and quantify effects of several factors on total decay rates, such as window opening behavior, home age, use of central furnace fans and kitchen and bathroom exhaust fans, use of air cleaners, use of air conditioners, and indoor-outdoor temperature differences. These findings will help identify ways to reduce exposure and risk.

History

Publication title

Environmental Science and Technology (Washington)

Volume

47

Issue

22

Pagination

12929-12937

ISSN

0013-936X

Department/School

Menzies Institute for Medical Research

Publisher

Amer Chemical Soc

Place of publication

1155 16Th St, Nw, Washington, USA, Dc, 20036

Rights statement

Copyright 2013 American Chemical Society

Repository Status

  • Restricted

Socio-economic Objectives

Public health (excl. specific population health) not elsewhere classified

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC