eCite Digital Repository

Factors influencing variability in the infiltration of PM2.5 mass and its components


MacNeill, M and Wallace, L and Kearney, J and Allen, RW and Van Ryswyk, K and Judek, S and Xu, X and Wheeler, A, Factors influencing variability in the infiltration of PM2.5 mass and its components, Atmospheric Environment, 61 pp. 518-532. ISSN 1352-2310 (2012) [Refereed Article]

Copyright Statement

Crown Copyright 2012

DOI: doi:10.1016/j.atmosenv.2012.07.005


The infiltration of particles into homes can vary seasonally, between homes in a community and between communities. However, few studies have examined the day to day variability across multiple homes. We used continuous data collected from a 2-year (2005e2006) personal exposure study conducted in Windsor, ON to estimate daily infiltration factors (Finf) for fine particulate matter (PM2.5), Black Carbon (BC), and ultrafine particles (UFP) as well as the ambient personal exposure factor (Fpex) for PM2.5. In addition, the daily ambient and non-ambient generated components of indoor and personal concentrations were estimated.

Median daily Finf estimates ranged from 0.26 to 0.36 across seasons for PM2.5; from 0.28 to 0.59 for BC; and from 0.15 to 0.26 for UFP. Median daily Fpex estimates ranged from 0.24 to 0.31 across seasons. Daily PM2.5 and UFP Finf and Fpex estimates were higher in summer than winter, although BC showed the opposite trend. Predictors of daily infiltration were typically related to window-opening behaviours, air conditioning, meteorological variables, and home age. In addition, use of electrostatic precipitators and stand alone air cleaners was associated with significantly reduced infiltration factors, indicating that these devices may provide a cost effective mechanism of reducing human exposures to particles of ambient origin.

The majority of indoor PM2.5 (median 57e73%) and indoor BC (median 90e100%) was of ambient origin across seasons, while both personal PM2.5 and indoor UFPs had significant non-ambient contributions (median 60e65%). Factors that were found to increase non-ambient particle concentrations were typically related to cooking, candle use, supplemental heating, cleaning, and number of people in the home. Factors that were found to decrease non-ambient particle concentrations were open windows, and air cleaner use.

This work has several implications to both epidemiologic studies and risk management. A better understanding of the factors influencing Finf and Fpex can improve exposure assessment and contribute to reduced exposure misclassification in epidemiologic studies. Furthermore, by increasing our knowledge of non-ambient and ambient exposures, risk associated with PM exposure can be managed more effectively.

Item Details

Item Type:Refereed Article
Keywords:particulate matter, indoor air quality, infiltration
Research Division:Commerce, Management, Tourism and Services
Research Group:Human resources and industrial relations
Research Field:Occupational and workplace health and safety
Objective Division:Health
Objective Group:Public health (excl. specific population health)
Objective Field:Public health (excl. specific population health) not elsewhere classified
UTAS Author:Wheeler, A (Dr Amanda Wheeler)
ID Code:101125
Year Published:2012
Web of Science® Times Cited:72
Deposited By:Menzies Institute for Medical Research
Deposited On:2015-06-10
Last Modified:2017-11-03

Repository Staff Only: item control page