University of Tasmania
Browse

File(s) under permanent embargo

Novel method for conscious airway resistance and ventilation estimation in neonatal rodents using plethysmography and a mechanical lung

journal contribution
posted on 2023-05-18, 09:47 authored by Zhang, B, McDonald, FB, Cummings, KJ, Peter FrappellPeter Frappell, Wilson, RJA
In unrestrained whole body plethysmography, tidal volume is commonly determined using the barometric method, which assumes that temperature and humidity changes (the 'barometric component') are solely responsible for breathing-related chamber pressure fluctuations. However, in small animals chamber pressure is also influenced by a 'mechanical component' dependent on airway resistance and airflow. We devised a novel 'mechanical lung' capable of simulating neonatal mouse breathing in the absence of temperature or humidity changes. Using this device, we confirm that the chamber pressure fluctuations produced by breathing of neonatal mice are dominated by the mechanical component, precluding direct quantitative assessment of tidal volume. Recognizing the importance of airway resistance to the chamber pressure signal and the ability of our device to simulate neonatal breathing at different frequencies and tidal volumes, we invented a novel in vivo, non-invasive method for conscious airway resistance and ventilation estimation (CARVE) in neonatal rodents. This technique will allow evaluation of developmental, pathological and pharmaceutical effects on airway resistance.

History

Publication title

Respiratory Physiology and Neurobiology

Volume

201

Pagination

75-83

ISSN

1569-9048

Department/School

Institute for Marine and Antarctic Studies

Publisher

Elsevier Science Bv

Place of publication

PO Box 211, Amsterdam, Netherlands, 1000 Ae

Rights statement

Copyright 2014 Elsevier B.V.

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the biological sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC