University of Tasmania
Browse

File(s) under permanent embargo

Sulfur dioxide activation: a theoretical investigation into dual S=O bond cleavage by three-coordinate molybdenum(III) complexes

journal contribution
posted on 2023-05-18, 09:41 authored by Robinson Jr, R, Abbasi, KK, Alireza AriafardAlireza Ariafard, Stranger, R, Brian YatesBrian Yates
Cummins et al. have observed that 3 equiv of Mo(N[R]Ar)3 (R = C(CD3)2CH3, Ar = 3,5-C6H3Me2) are required for dual S═O bond cleavage within a SO2 molecule. Using density functional theory calculations, this theoretical study investigates a mechanism for this SO2 cleavage reaction that is mediated by MoL3, where L = NH2 or N[tBu]Ph. Our results indicate that an electron transfers into the SO2 ligand, which leads to Mo oxidation and initiates SO2 coordination along the quartet surface. The antiferromagnetic (AF) nature of the (NH2)3Mo–SO2 adduct accelerates intersystem crossing onto the doublet surface. The first S═O bond cleavage occurs from the resulting doublet adduct and leads to formation of L3Mo═O and SO. Afterward, the released SO molecule is cleaved by the two remaining MoL3, resulting in formation of L3Mo═S and an additional L3Mo═O. This mononuclear mechanism is calculated to be strongly exothermic and proceeds via a small activation barrier, which is in accordance with experimental results. An additional investigation into a binuclear process for this SO2 cleavage reaction was also evaluated. Our results show that the binuclear mechanism is less favorable than that of the mononuclear mechanism.

History

Publication title

Inorganic Chemistry

Volume

54

Pagination

534-543

ISSN

0020-1669

Department/School

School of Natural Sciences

Publisher

Amer Chemical Soc

Place of publication

1155 16Th St, Nw, Washington, USA, Dc, 20036

Rights statement

Copyright 2015 American Chemical Society

Repository Status

  • Restricted

Socio-economic Objectives

Expanding knowledge in the chemical sciences

Usage metrics

    University Of Tasmania

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC